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Classical electromagnetic field The monochromatic plane wave

The monochromatic plane wave |

Maxwell equations for the free electromagnetic field:

1 OE 0B
2ot~ T ot =
V-E=0, V-B=0. (1)

or

1 O°E 1 0°B

——— =AE ——— = AB. 2

c? Ot2 ’ c? Ot? (2)
monochromatic plane wave:

E(r,t) = Eox/sin(wt — Kk -r+61)er + Eyyrsin(wt — K -r+92) e . (3)

B(r,t) = P En L) (4)

and

@ ej, e, kK form a right-handed coordinate system.
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U e SRS
The monochromatic plane wave |l
@ w=c|K|
E. = Epy/ sin(wt—n-r—l—dl), Ey/ :Eoy/ sin(wt—n-r—|—52). (5)

2
E;, E , BB

+ — cosd = sin’ 4. 6
ng’ Egy’ Eox Eoy / (©)

i.e. equation of an ellipse (with 6 = d1 — 62); for 6 = % (mod ) the ellipse semiaxes are
alonf ey, es.

If e; is along the major semiaxis, (e;1 — s1, €2 — s2)

E(r,t) = Enasin(wt — Kk -r+ &) s1 — Enxcos(wt — Kk -r+dp)s2 . (7)
The general case

E(r,t) = Re[&se ™ Y], (8)

with & defined as

Eo = ;\/ng, +E2, e, (9)
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Classical electromagnetic field The monochromatic plane wave

The monochromatic plane wave lll

and the complex polarization vector

s=cos(/2e;+e " sin¢/2ez,

with
Eo, Eoy,
cos(/2 = O : sin(/2 = o
2 2 2
\/EOZX/ +E0y/ \/EOX/ +E0y/
s-k =0, s-s*=|s|[’=1.

@ linear polarization:
0§ =0,+7 —> s =cos(/2e; sin(/2e; =5s",

@ circular polarization

1

5::|:7T/2, Eoy/ = Ep, — S = —2(61:Fi62).

7
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(14)
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Classical electromagnetic field The monochromatic plane wave

The monochromatic plane wave |V

if e = s1, @ = s, (i.e. ellipse principal axis along the coordinate frame unit vectors)

s =cos(/2s1 +isin(/2sy, (15)

and the electric field becomes

E=FEy[cos(/2sin(wt — Kk -r+dp)s1 —sin(/2cos(wt — Kk -r+do)s2 |, (16)
with

Fo=/E4+E}. (17)
NB:

Eor + Ey = Eger + Egy/ (18)
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Classical electromagnetic field The monochromatic plane wave

The energy density

w(e t) = 2 (E (r, t) + 2 B(r, t))
For a plane wave

w(r, t) = e E*(r, t),

z—/ r,t)dt = —(EOX/+E0y)_—E0.

The electromagnetic field intensity

€0 €0
I:pC:ECEg :§C|80|2

The total energy

(19)

(20)

(21)

(22)

(23)
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Classical electromagnetic field The electromagnetic potentials

The electromagnetic potentials

E:—v¢—%—’:, B—VxA. (24)
gauge invariance:
AN —A+VF, ¢’=¢—%, (25)

Examples:

@ Coulomb gauge: ® =0, iar V-A = 0.
A(k;r,t) = l[EOX/ cos(wt—k-r+9d1)e1+ Ey,r cos(wt—kK-r+0d2)e]. (26)
W

@ Coulomb gauge + "good” choice of the coordinte system:

E
A(r,t) = Ao cosgcos(wt—n-r—l—do)sl—|—singsin(wt—l<.:-r—|—(5o)52 , Ao = EO

(27)
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Classical electromagnetic field Stokes parameters

Stokes parameters

Definition in classical electrodynamics
E(t,r) = EoRe {sei(“t_k'r)}

One defines two unit vectors €; and €> such
that

£ = -
€1-e&2=0, €-k=0, e-k=0 ¥ \ /
ei=¢€-€, I1=172 &‘3 O O

o 51 NI€1 _1-621

© &~ TLigiey)/vi ™ Ley—er))va

® {3 I(€1+/€2)/\/§ a I(el—lez)/\/i
where Z. intensity corresponding to the component of E along e.
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The multimode field
The multimode field |

A(r,t) /%;)A(K, s(k);r,t)dk.

Periodic conditions in the volume V = [3

Ax+Ly,z,t) = Alx,y+ Lz t) = Alx,y,z+ L, t) = A(x,y,z,t) .

eirxl _ giryl _ gikzl 1,
X 1 X y 1 Y z [ Z
A(I’, t) = Z Amod(r, t) cu Amod(r, t) — RG[AQ, mods(&)ei(n-r—wt)] 7
mod

A(r,t) =Re{) > sr(r)Ci(x, t) }

K A=a,b \/_

(28)

(29)

(30)

(31)

(32)
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The multimode field
The multimode field I

E(r,t) = Re{i ZZw(HL)SA(&)Q\(m t)\'/'i}
B(r,t) = Re{i ZZ&XSA(&)CA(K, t)\l;_r}.
Wy = %0/ (E2 +c232) dv |
Wv=5°ZZw(m) | Ca(k, 1) |

Dipole approximation: homogeneous fields

E(r,t) — E(t), B(r,t) =0

(33)

(34)

(35)

(36)

(37)
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The fild operators
The field operators in the Schrodinger picture |

Schrodinger picture: (operators are time independent)

AP (r) = \/26071 Y [se™ "4 + st e ™5, (38)
[5,87]=1. (39)
(1) = i[se™" 5 — s e ™ 5] (40)
mod 260 V ’
r)=1i \/ f kx[se®"5 — s e ™5, (41)
mOd 260 Vw

A°P(r) =) ALa(r) (42)

mod

independent modes

[ é\modly é\modg] — [ é\modly éinodz] — O,

14 / 128



The fild operators
The field operators in the Schrodinger picture |

o o h . T
[((Ex2q): (), (Egn ), (r2)] = — P sisesin(k - (n—r)) T,
J eoV

op ih

[(Eoa); (r1); (Bmoa) (r2)] = oy Sl xs)kcos(r - (rn—r)) I,

(43)
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1719 (o sy
The Fock space |

I:Irad — Z I:I;F())d — Z hwmodé\jnodé\mod . (44)
mod mod
HP = &'3hw. (45)
H°P | n;mod) = nhw | n;mod) , n>0. (46)
(n;mod | n; mod) = 6, . (47)
AT\

o At 4 (48" A

Nmod - amod dmod | n> - \/m | O> . ( 8)

dln) = /n|n-1), (n#0),  4]0)=]zero),
atln) = Vn+1|n+1). (49)

| Fock) = H ® | n;mod) =| n1, o,y ..., np, ...) (50)

mod
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1719 (o sy
The Fock space |l

The total energy

WFock — Z nmodhwmod . (51)

mod

Stationary states (Schrodinger picture)

| WEoSkY — | Fock)e™ i Wroek t (52)
Energy density

pv — % Z Nmod MWmod -

mod

1 1
v Gy [ dn.

mod K \=1,2

One uses spherical coordinates of k

1 >,
= dQz E ,Sx) hwd Kk,
p (2r): / /o k'n(k,sx) hwdk

A=1,2
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1719 (o sy
The Fock space

expectation values

< WIPSk | E°P | WIS > =< Fock | E°® | Fock >=0,

E(r)

B(r) = <V |B® | V¥ >=0. (53)
AE=/<WV|EP.EP|W>_—<W|EP|WU>. -<WV|EP|WY>, (54)
for one mode
AEmos = /2 (n+1/2) . (55)
eV
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Quantized electromagnetic field Heisenberg picture

Heisenberg picture

H A

US—>H(t) — e#Hrad t.

Time dependent operators and time independent states;

| w?tat , Fock >:| Fock > )

(56)

(57)

(58)
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Quantized electromagnetic field Coherent states

Coherent states |

Consider the one-mode case and Schrodinger picture; a coherent state: eigenstate of the
annihilation operator.

ilz) = z|z). (59)

The set of Fock states is a basis, i.e.

[2) =) cnln). (60)

vVn+lcpmi=zcn, cn= ‘. (61)

Normalization

(z|z)=1, (62)

oo 2
z 22
PSR g p e — (63)
n=0

n!
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Quantized electromagnetic field Coherent states

Coherent states ||

—|z/?

ie. | |?°= e . Up to an arbitrary phase
Yy

| 2) = e 2 Z\jm | n), (64)

NB:

@ |z) is not eigenvector of N for arbitrary z

@ |z = 0) is the vacuum state (and eigenvector of N)

Propertis of coherent states:

1 : *
(z1 | z) = exp ) | z1 — 2 |2 +ilm(z; z) | . (65)
i.e. (z1 | z2) are not orthogonal if z; # z but they are almost orthogonal if |z; — z| is
large.
(z]|4&"|z) = z*. (66)

21 / 128



Quantized electromagnetic field Coherent states

Coherent states Il

Consider an electromagnetic field in the state

| V(o)) = 2)® | x) (67)

i.e. a coherent state in one mode and arbitrary state idy) for the other modes. The
probability to find n photons in the mode coresponding to | z) is

p(n) = | = 127 (68)
I.e. Poisson distribution.
n=lz[”, (69)
=z "+ |z},  (@nR=n=|z[ . (70)
A_n _ 1 _ 1 | (71)
nolz| a

small if n is large
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Coherent states
Coherent states |V

Time evolution of a coherent state:

V(o) =D caln) —|W(e) = cre w0 | gy

our case:

oo ([ ze—iw(t—to) _
\w(t)>:e—%'zlzz( 75 ) | n) =| ze W0 (72)

e.. if a tp | W) is coherent state for z then at t it becomes coherent state for
z exp[—iw(t — to)] (periodic with w)

Use the notation
z(t) = z exp[—iw(t — to)] (73)
Overcompleteness of coherent states

use the notation: z = z 4+ i z; . Then define

/ / z){(z|dz dz (74)
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Coherent states
Coherent states V

and the matrix elements

m:\/ﬁ/ / (z)" 2" e d z d 7.

Calculate in polar coordinates z, = p cos¢, zi = p sin¢, and one obtains Z,, = Topm,
l.e.

Ly

/ / MNz|dzdz =T, (75)

A coherent state can be written as a superposition of coherent states. Proof: one starts
from | Z/Y =1 |Z2),

/ / (z|Z) |2)dz dz . (76)

The coherent states are an overcomplete set. Also

@ The expansion of an arbitrary vector in coherent states is not unique

LM 24 / 128



Coherent states
Coherent states VI

@ the subset
{| m + in >}n1,n2€Z )

is complete

The electromagnetic field in a coherent state: the expectation value of the electric field

E(t) = <z(t)| E™(r) | 2(t) >
_ 2?:;)\/ i [Z ei(l@‘l’—w(t_tO)) S — Z* e—i(Kpl’—W(t—tO)) S* ]- (77)

(like in the classical description). Similar for the magnetic field. By direct calculation
the standard deviation of E

hw

AE =
2¢0V

(78)

constant, the same for the vacuum state.

Coherent states are ‘“close” the classical states
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Coherent states
Coherent states VI

Generation of coherent states

1 N
| z) = e 2le g7 | 0).

One defines

* A

é(Z) — ezé1L —z 4

(Glauber displacement operator) with

%

A 12 At %a
D(z):e 5 12| % o za,

A z5T —z*a
D(z)|0) =e |10) =| 2),

D(z)aD(z)! = a—zI, DO)=1, D) =D(-z).

Minimum uncertainity states: one defines

o=(2) " (5 +3). p=i (%) (s -5)

(79)

(80)

(81)

(82)
(83)

(84)
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Coherent states
Coherent states VIl

with
[Q, P] = ihl,

l.e. “position” and “momentum” operators

1Q12) = Z'Re(z), (2] P|2)=2hwim (),
(0Q)> = h/2w, (6P)2 = hw/2 ,

and AQ-AP = h/2, (minimum)

(85)

(86)
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Quantized electromagnetic field Phase operator

Phase operator |

One defines

é=> |m{m+1| &=> |m+1)(m]| .
m=0 m=0

Properties:
élny = ) [mMbma1=ln—1), n#0,
m=0
é10) = J|zero), & |n)=|n+1),
gat =7, éte=7— |0)0] .

(isometric, not unitary). Also

One can write

5= (N+DNY2e, 5 =& W+

(87)

(88)
(89)

(90)

(91)

(92)
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Quantized electromagnetic field Phase operator

Phase operator |l

or

and

N\

C:cosqg, §:sinq3

Expectation values in a Fock state is zero; in a coherent state non-zero.

Uncertainity relations in a arbitrary state:
[C,N=i§, [SSN=-iC, [5C == |0)0]

1 —

AC - AN > 7oy | .

AS - AN >

N| =
e

AC-AS >

&=

_§| |7

(93)

(94)

(95)

(96)

(97)
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Quantized electromagnetic field Phase operator

Phase operator Il|

The eigenvalue problem of é:

é|¢)=e"]9) (98)

%; e | ny (99)

61 ) = 66— ) /OW|¢><¢|d¢ - 7. (100)
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Quantized electromagnetic field Semiclassical approximation

Semiclassical approximation

Work in Heisenberg picture: In a coherent state the expectation values of E and B
concide with the classical expressions. Use the unitary transformation

é(Z)TAOP,H(r, t)[j(Z) — 2€Ohvw |:SZ ei(k:,-r—wt) 4+ S*Z*e_i(n.r_wt) ]
+ A®PM(r 1), (101)
V) = D) V). (102)

If | W) =|z) then D(z)' | W) = |0) and the expectation values of the second term in
the transformed operator is zero.

More general: semicalssical description is “good” for large number of photons.
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Motion of the classical particle in electromagnetic fields NR dipole approximation

NR dipole approximation |

Use velocity gauge: A = A(t) and =0
A(t) = f(t) [Cxexsin(wt) + ( ey cos(wt)], G+ =1 (103)

with f(t) arbitrary, and tljicm f(t)=0

dA(t)

E(t) = — prrat B(t) =0 (104)

mr(t) = eE(t), mr(to) =0, mr(to) = vo (105)
Solution

mr(t) = —eA(t) + vo (106)

r(t) = —% A(t)dt' + vo(t — to) (107)
Notation 0

—%/A(t')dt’ — aft) (108)
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Motion of the classical particle in electromagnetic fields Non-relativistic non-dipole approximation

NR non-dipole approximation |

Consider only plane-wave fields: A = A(¢) = A(ct — z). Initial conditions:

We shall assume that at a given moment of time tp the particle is in the origin of the
reference frame, and it has the given velocity vgp; in the relativistic case the
corresponding four-velocity will be denoted by wug, and the four-momentum by pg. The
field propagates along the n direction, chosen parallel to Oz, and is described by the
potential A(¢) = A(ct — z). We denote by Ap the value of the potential A in the origin
of the reference frame at the initial moment tj

Ao = (0, Ag) = A(c) (109)

with ¢¢o = cty. For the case of a pulse, the most natural choice for ty is a moment
sufficiently far in the past, when the pulse has not reached the origin and the particle is
free (i.e. Ao =0).

Cases of interest:

Case 1: linearly polarized pulse; the particle is at rest in the origin at a moment tp very
far in the past, when the pulse has not yet reached the origin.
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Motion of the classical particle in electromagnetic fields Non-relativistic non-dipole approximation

NR non-dipole approximation Il

Case 2: linearly polarized monochromatic field; at the moment ty when the field
vanishes in the origin, the particle is located in the origin, with an initial velocity vg
directed along the field propagation direction.

The Lagrange function of a nonrelativistic particle of mass m and electric charge e
moving in the electromagnetic field A(¢)

L(r,r, t) = m7r2 + er - A(¢) (110)

gives the equations of motion

< (mi1 + eA(@)) =0, (111)
d . OA(@) . dA(¢)
p (mz) = er- 5, — e a6 (112)
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Motion of the classical particle in electromagnetic fields Non-relativistic non-dipole approximation

NR non-dipole approximation Ill

where r is the component of r orthogonal on the propagation direction n = e,. From
the first of the two equations above, and taking into account the initial conditions one
obtains

L= vl — %(A(qﬁ) — Ao). (113)

Using this result in Eq.(112) one gets

d d [ € m 2

9= A(p) — Ag — 2 ) 114

dt* =~ do [2m2 ( (#) = Ao = Jvou ] (114)
It is convenient to use ¢ as the independent variable. From the relation

do Z

— = 1— — 115

gt~ © ( c) (115)

one can see that this change of variable only makes sense if z < c; the restriction is
however not a problem, since we are not interested, anyway, to find a solution with
z > c¢. The above equation in the new variable ¢ writes as

d% (f B %é) - ddgb [2(21)2 (@)~ Ao - g"“ﬂ ' (116)
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Motion of the classical particle in electromagnetic fields Non-relativistic non-dipole approximation

NR non-dipole approximation IV

Taking into account the initial conditions one obtains the equation

2 12 _eA() w _lws (117)
c 2c? 2(mc)? c 2c
with
2mvg |

A%(9) = (A(¢) — Ag)® —

(A(¢) — Ao) (118)

€

whose solution is

R =

One notices that the solution z is defined only if

e A9) _ (1 ~ @)2 (120)

C

2(mc)?
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Motion of the classical particle in electromagnetic fields Non-relativistic non-dipole approximation

NR non-dipole approximation V

and that z cannot become larger than c. Again, using ¢ as the independent variable,
one gets

dz ]. dz er_ 1 dl’_]_
— = 121
dp  c— % dt’ dp — c— % dt (121)

or

ct—z 4 2 e? ’
7 1oy my - A
z = / dx (122)

Po = ctp

o= (123)

2A2(x>
(mc)?

The first of the above equations must be solved for z, then its solution used in the
second one, to get r .

37 /128



Motion of the classical particle in electromagnetic fields Non-relativistic non-dipole approximation

NR non-dipole approximation VI

Examples:

Case 1 is described by the conditions: ¢g = —o0, Ag = 0, vo = 0, the corresponding
trajectory being:

R ERVARE

5 — dX (mc)
2A2(x)

(mc)?

= 7de \/1A(X) . (124)

The solution is defined for e°A?(¢) < (mc)?; in fact, the non-relativistic approximation
is valid only in the limit e*A®(¢) < (mc)®. In this case the previous solution becomes

ct—=z ct—~z

z = / dx%i)xz), rL:—i / dxA(x). (125)

mc
— 00 ®0

In the case 2 we have ¢9 = 0, Ap = 0, vo = w3 n, and the corresponding solution

-

_ d _ < 126
; O/X e (126)

(mc)?
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Motion of the classical particle in electromagnetic fields Non-relativistic non-dipole approximation

NR non-dipole approximation VII

/ A(x) |
\/ _ V03 _ e2A%(x)

(mc)?
(127)
In this case the conditions of validity of the non-relativistic approximation are
e’A?(¢) < (mc)? and w3 < ¢, which leads to the equations of motion
ct—z 2A2( ) ct—z
V03 € X e
= d = —— dxA(x). 128
z / X{C+2(mc)2], ry — XA (x) (128)
—o0 %0
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Motion of the classical particle in electromagnetic fields Relativistic case

Relativistic case |

Plane wave; the same initial conditions and particular cases as previously.

In the relativistic case the equations of motions are

w
(ZL = eF,u,I/uV’ u = %7 p = md, (129)
- Ll

where 7 is the proper time and F is the electromagnetic four-tensor of the field
Intensities:

dAl(¢)  dA%(¢)
0 a6 dé 0
_ dAl(¢) 0 0 _ dAY(9)
do do
FH = 91 AY — Y AP = . (130)
dA?(9) dA’(¢)
4 0 0 =5
dAl(¢)  dA%(9)
0 4o dé 0

40 / 128




Motion of the classical particle in electromagnetic fields Relativistic case

Relativistic case ||

With the above definitions the equations of motion become

o NG () 1
From the first of the above formulae one obtains
d(p°—p’) _, (133)
dr

i.e. p° — p® = m(u® — P) is a constant of motion; taking into account the initial

conditions we have p® — p> = m(u§ — 13). Further, noticing that

0 3 d ( 0 3) d¢
— — — il 134
u — u- = const X — X (134)

Eq.(132) becomes

dp. _ __dA d¢
dr do dr

(135)
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Motion of the classical particle in electromagnetic fields Relativistic case

Relativistic case ||

It is again convenient to look for the solutions of the above equations as functions of ¢.
Using the initial conditions one obtains

pL(®) = —e (A(¢) — Ao+ P, (136)

and, then, from Eqgs.(131) and (136)

dp’(¢) e’ PoL 2
dp  2m(uf — ud) do (A(¢) Ao+ ) (137)

or

e’ A%(¢)

138
2m(ud — ug)  Pos, (138)

p(¢) =

with

2Pu

- (A(®) — Ao). (139)

A%(9) = (A(¢) — Ag)* —
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Motion of the classical particle in electromagnetic fields Relativistic case

Relativistic case |V

The differential equations in ¢ obeyed by the coordinates are

dr 1 dr _ p(¢)
d¢  (ug—ug) dr m(ug — ug)

with the solution

L= _m(u0 — u3) / A(X) Ao — p%] ax

ct—z

2 2 3
eA(X) Ug
— d ]
z / X [2m2(u8 R T ]
folt)

(140)

(141)

(142)
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Motion of the classical particle in electromagnetic fields Relativistic case

Relativistic case V

Examples: In the particular case 1 the relativistic solution reduces to

ct—z ct—z
e S 2
r. — (x)dx, =z 2(me)? / (x)dx (143)

In the low intensity limit the above equation become identical with the non-relativistic
result. Usually the total displacement in the polarization plane vanishes, so that at the
end of the pulse the particle is left at rest in a point along the Oz axis. If the envelope is
simple enough it is also possible to calculate the total displacement along the
propagation direction; for example, for a Gaussian pulse of amplitude Ao, frequency w

and FWHM 7, one gets
1 ( 271, \°
_ =z P 144
! eXp[ 2 (1.1774) ” (144)

Ay — e’ A m TT7p
4m3c\ 2 1.1774
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Motion of the classical particle in electromagnetic fields Relativistic case

Relativistic case VI

For all realistic cases the second term in the previous equation is negligible, and the total
displacement becomes

2 A2
e"Ay |7 Tmp
Az — Ny . 145
T am2c\ 211774 (145)

In the case 2 the solution is

= / dxA(x) (146)

ct—z

Z—O/dx[ cA) L, w 3]. (147)

2m?(ud — u3)?  ud — ug

If the initial velocity up vanishes the trajectory has a “Z" like shape - an oscillation along
the polarization direction, composed with an advance along the propagation direction. It
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Motion of the classical particle in electromagnetic fields Relativistic case

Relativistic case VI

is possible to find a particular “initial” velocity vp such that the total displacement along
the Oz axis during one optical period cancels. The condition writes as

2 A2 3

€ Ao(¢) Up
=0 148
() — ) (- ) -

and it is satisfied for the initial velocity

c e’ A3 _
4(mc)? + e? A5

Vo — —n nVo (149)

With this initial condition, and using the notation

2 A2
*2 2 € AO
_ 150
m m- + 5c2 (150)
the solution becomes
ct—z 5 ct—z A2
e € 2 0
= — e — — . 151
== o, 2=yt [ oo (a2 (151)
0 0
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Motion of the classical particle in electromagnetic fields Relativistic case

Relativistic case VIl

In this case the trajectory has the well known “figure 8" shape in the plane Oxz. s
important to notice that, unlike in the case 1 the amplitude of the oscillation is limited
along both Ox and Oz directions when Ag tends to infinity; the limits are

im Ax = V25, im Az= —. (152)
w

Ag— o0 Ag— o0 4w

The quantity m* defined in Eq.(150) is the so-called “dressed mass”; it is an average
effective mass of the electron interacting with the monochromatic field.
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Motion of the classical particle in electromagnetic fields

Numerical examples

Numerical examples |

A0/ A,

Figure: The vector potential A in the origin of the reference frame, for the case of
a linearly polarized Gaussian pulse of 7, =2, w =1 au.

48 / 128



Motion of the classical particle in electromagnetic fields Numerical examples

Numerical examples |

2.5+ -

1.5~

0.5

-40 -20 0 20 40
X

Figure: Case 1: the relativistic (in black) and non-relativistic (in red) trajectories
for a lineraly polarized pulse with 7, = 2 cycles, w =1 au and for three values of
the amplitude Ay.
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Motion of the classical particle in electromagnetic fields Numerical examples

Numerical examples |

350 : : ‘

300

250

200~

150 —

100 -

50

Figure: Case 1: the relativistic (in black) and non-relativistic (in red) trajectories
for a lineraly polarized pulse with 7, = 2 cycles, w =1 au and for three values of
the amplitude Ay.

50 / 128



Motion of the classical particle in electromagnetic fields

Numerical examples

Numerical examples |V

z (au)

0 5 10
X (au)

Figure: Case 2, initial condition vy = 0: the relativistic trajectory for
monochromatic linearly polarized field of amplitude Ag = 10 au.
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Numerical examples V

40 ‘ ‘
Ao = 5000 au

Ay =1000 au "\ p
20~ \ / -

A0 =100 au

z (au)

A, =50au
20 y \ 0 =

i ‘ \ ‘ ‘ ‘
o0 -100 0 100 200

X (au)

Figure: Case 2, initial condition vog = Vyn: the relativistic trajectories for
monochromatic linearly polarized field and four values of the amplitude Ay.

Important conclusions: for typical cases, plane wave

@ the laser field: finite pulse
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Motion of the classical particle in electromagnetic fields Numerical examples

Numerical examples VI

@ dipole approximation: the position and velocity of the electron at the end of the
pulse is the same as at the initia moment

@ relativistic corrections: the electron velocity at the end of the pulse is the same as
at the initial moment, i.e. no net energy gain

@ relativistic corrections: there is a net displacement along the pulse propagation
direction
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The Volkov solutions The Dirac-Volkov solutions

Derivation of Dirac Volkov solutions |

D. M. Volkov (1953)

Plane wave field:
A(x) = (Ao(ct —n-r),A(ct —n-r)) = A(p). (153)

with ¢ = ct —n-x. Definen=(1,n), n-n=1-n*> =0, x = (ct,r)

p=ct—n-r=n-x (154)
Gauge
dA* dA"  d(n-A)

i.,e. n- A = const. Choice: n-A=0.

Choice of the reference frame:

° n:le

@ a=a, +aj, aj=n(n-a), aL =nx(axn)
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The Volkov solutions The Dirac-Volkov solutions

Derivation of Dirac Volkov solutions Il

Dirac equation:
[+ (Pu — eAu) — mc] (x) = 0, (156)

V=8, 4 =Ba (157)

(5 %) (2 )

The usual notation

and

|_|,u = P,U — eA,u (159)

[ﬁ _ mc] b(x) = 0, (160)

Look for the solution

di(pix) = [A+ me| exp [—% & (p- x)] Oi(d p)Z  i=1,... .4 (161)
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The Volkov solutions The Dirac-Volkov solutions

Derivation of Dirac Volkov solutions 111

_ > ) 41, i=1,2 )
p-p=(mc) ,e,—{ 1 =34 , Zi: constant
[ﬁ - mc] [ﬁ + mc} exp {—% i (p - x)] di(p; p)Zi =0 (162)

AB+ BA = ALBoA" " 4+ B ALY A
= AuB(Y'Y +9"Y) + [Bu, Auly" "
= 2A-B+ Cu..y"” (163)
. . dA,  dA,
M) = ieh (9,4,(6) ~ D.Au(9)) = ieh (. — n. T ), (164
One obtains
An =N+ llehn% - 11ehﬁn — (P? —2eA(¢)- P+ 2 A*(¢)) +iehn— dA. (165)

dp 2 do

do
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Derivation of Dirac Volkov solutions 1V

(NB: {A,A} =0, A-P=P-A)

—2ihei(n - p) ¢, g(f) 1ehﬁd'32;b) + e*A%(¢) — 2¢ieA(9) - p| ®i(¢) =0, (166)
do; cie dA
b = m” (e,A (¢) — 2eA(d) - p) + 2n.pnd¢] ®;. (167)

(NB: differential equation for a matrix)

®; = exp |:i2(n p)/ eie”A°(x) — 2€A(x) - p] dx] exp [2

nA(qs)] (168)

7 A9)| = ~A(¢)AnA(s) = 0 (169)

nA(gb)} exp[Ai(¢; p)] i=1,...,4 (170)

Pilpix) = [1 4 5
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The Volkov solutions The Dirac-Volkov solutions

Derivation of Dirac Volkov solutions V

Ni(9; p) =

¢
1

h2(n p)

The solution ¥;(p, x)

Yi(p; x) =

Yi(p; x)

U0ip) = 1

2eA(x) - p — e *A(x)| dx.

{/I'\I -+ mc} X

o |1 ei(p )+ A(G.p)]| 146

2(n - p)

)| 2

(171)

(172)

oo |1 (x 2) + A(GD) | UG (B + M)z, T=1,073)

2(n P)

) ] (6P +ma)Z = &i(p)

LMI

(174)
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Derivation of Dirac Volkov solutions VI

Notation:

Fipix) = =36 (x - p) + Ai(#i ). (175)
|dentity:

Qi(¢: p)&i(p) = p —€ieA(p) + € mc At i(p); (176)

2(n- p)

@ At t — —oo the Volkov states reduce to plane wave free states.

@ positive/negative energy states: Volkov states originating from positive/negative
energy solutinos.

P yi(p; x) = eipLvi(p; x), (177)

(n- P)i(p; x) = €i(n - p)ibi(p; x). (178)
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i DiesVelloy ol fors
Orthogonality of Dirac Volkov solutions |

Orthogonality at the same time

(Wi(p's x)|[Wi(p; x)) = /dr Wi (p; x)vi(p's x) = 6;0(p — p) (179)

R3
Proof of the orthogonality:

@ (A) if both solutinos are positive (or negative) energy type
@ (B) if the two are of different types

Proof for the case (A)

Wi’ x) [¥i(pi x)) = (&(p') | / dr QF (¢ p')(¢; p) e 77D ().

(180)
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Orthogonality of Dirac Volkov solutions |

Direct calculation for the integral over r

Wi(p'; x) | ¢i(p; x)) = (2mh)? 6(pL — p'L) X

X{(fi(p’) {/dZQ?(cb: p')(¢; p)eQ"f'(z;”’p/)} €j(P)>} ., (181)
Qi(z:p,p’) = —% +n-(p' —p)] x (182)

0
1 1 2 2 2 _
X{Z(Z—l_Ct)2(n-p)(n-p/)/[(pJ_:FeAJ_(X)) +mc}d><},
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Orthogonality of Dirac Volkov solutions ||

Q7 (¢; p)Q(9; p)‘ = 1 (1 4+ P F eAL(Cb)]2 + m2c2> (’}/Oﬁ 2.

pi=p, 4 (n-p)(n-p)
(183)
Change of variable
1 1 /
=3 (Z M PR TP / [(m FeAL () + m2c2} dX) ' (184)
(Wi(p'; x) (P x)) = (27h)* (P — PL) X
x6((n-p') = (n-p)) (&P 7)*IE(P))- (185)
Use properties of free Dirac spinors
Wi(p'; x)[i(pi x)) = 356(p — P'). (186)
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Ul iRt
Orthogonality of Dirac Volkov solutions IV

Proof for the case (B): identical calculation

Wi(p'; x) | ¢i(p; x)) = (2mh)? 6(pL + p'L) X

X{(fi(p’) {/dZQ?(cb: P )S2(; p)eQ"f'(z;”’p/)} €j(P)>} , (187)
Qi(zip,p') = —% n-(p" +p)] x (188)

@
X {;(z—k ct) — 2(n-p)1(n-p’) / [(pL — eAL(X)2 -+ m2c2} dx} )
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Orthogonality of Dirac Volkov solutions V

O (61 ) (6 p)‘ = 1 (1 n [pL — eAL(d)] + m2c2) (+°A)2.

pi=p, 4 (n-p)(n-p)
(189)
Change of variable
1 1 /
pP=5 (z + ct — (7 p)n ) / [(pL —eA (X)) + m2c2} dx) : (190)
(i (p's X)|9i(pi x)) = (2wh)* 6(pL + P'L) X
x6((n-p') + (n-p)) (&(P)('7)’|&(p)) = 0. (191)
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The Volkov solutions The Dirac-Volkov solutions

Completeness of Dirac Volkov solutions |

/ dp i(p: t,1) U7 (pi t,¢) = 8(r — ') .

/14

Define

C(r,v 1) = > /dpw/(r t; p) i (v, t; p)

114

Change of variable

{pL,p} — {epL,v=(n-p)};

and

p> € (—o0,0),— dv € (00, 0)

(192)

(193)

(194)

(195)

(196)
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Completeness of Dirac Volkov solutions Il

Clr.r' 1) = Z/dp /"V (B ) wiprvin )0 (i) (197

114

¢
C(l’, rla t) — eXp %/dXeAO(X) (2711'-h)3 /dpj_e%pJ"(rJ‘_rl) X 1 (198)

¢’ R?

Y [Fo(m, 6,6')Co(a, b) + T1(ps &, ¢')S-1(2, b) + T_2(p., 6, &) C_a(a, b)] .

N

Cn(a, b) = /dv v" cos (av — é) : Sn(a, b) = /dv v" sin (av — é) . (199)
0 0
/ 1 ¢/
z—z 1 Y 2 2
a=225, b= 2h/dx [(eAL(X) p.)2+m c}, ab > 0 (200)
¢
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Completeness of Dirac Volkov solutions Il

Fo(pL,¢,¢") =1— a3

M a(pes6.8') = =i {[2(B1 +me) — e (AL(6) + AL(6)) ]| 1%+
e (AL(®) - AL(¢)) 7]

M _2(pL,¢,¢') = [Pi +m’c® +e (/A\L(cb)li + li;h(cb/)) — AL ($)AL(S)
+ mc (e/L(qb’) _ e/L(qb))] (1+ as).

S_1(a,b) =0,  Go(a,b)=nd(a),  C_a(a,b)=md(b). (201)

5 (Z ;hz) = 2h8(z — ), (202)

¢/
1 2 2 2 2h /
0 (%/d(b {(GAJ_(X)_pL) +m c]) = (eAL(¢)—pL)2+m2C25(2_Z)
¢
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Completeness of Dirac Volkov solutions IV

(203)
Mo(pr,6,0)| = [(eAm) —pu)’ + mzcz} (1+ ). (204)
Clr.¥' 1) = (27rlh)2 /dme%mfrfi) (%(1 +as)+ %(1 _ a3)) 5(z—2'") (205)
C(r,r',t) =6(r—r) (206)
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Derivation and properties of Gordon-Volkov solutions |

The Klein-Gordon Hamiltonian for a particle of mass m and electric charge e < 0 in the
laser field A(¢) is,

H(x) = —c’ M, N* + m°c*, N, =ihd, — eA. (o). (207)

and the Volkov solutions of the corresponding equation

H(x)$(x) = 0, (208)
1 q:hpxi S (F) f dx[e® A% (x)F2eA(x)-p]
Ve(pixX) = oz o (209)
The inner-product definition:
F(:60) = [ drf" () findh — 2ce(0)| £ (210)

/ dr [f*(x)ihag (x) _ g(x)ihaf(;gx) _ 2ceAo(d)F (x)g(x)
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The Volkov solutions The Gordon-Volkov solutions

Derivation and properties of Gordon-Volkov solutions Il
Orthogonality

(Y (p1; x), Y+(p2; X)) = £6(p1 — P2), (¥4 (p1;x),¥—(p2; x)) = 0; (211)

The general form of the completeness relation for a set of functions {¢;} orthogonal
with respect to an inner product,

(@i, Pk) = didix, (212)

|_Zd (i) (213)

where | is the unit operator. For us:

= [ b (P (p). )~ [ dpu- (P} (). (214)

and, using the definition of the Klein-Gordon scalar product one sees that the above
relation is equivalent to the pair of relations

T = [ dp [0 (i)t (pix') — v (pix)0" (pix)] =0 (215)
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The Volkov solutions The Gordon-Volkov solutions

Derivation and properties of Gordon-Volkov solutions Il

and

o= [do|vioi) (ihawé‘j;x’))*—w-(p;x) (W—g;ﬂ)* (216)

— 2ceAo(¢") (U1 (P x)VL(pi x') — Y- (p, x)¥Z (p; X)) ] =0(r—r');
Using Z; one simplifies 7>

7.~ [ do | :(pix) (mé‘%g;x”)* — o (pix) (W—g:x”)*]. (217)
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The transition amplitude

“Usual” expression

Air = =~ [ x5 (2 ) Hhua ()i (1 %)

Q: Is it valid for Klein-Gordon case?

The Klein-Gordon Feynman propagator

Kox') = —ihb(t—t) / A (p, X (p; X')
— e — 1) / dpp_ (p: X)P (i x')

The action of the Feynman propagator on an arbitrary function

b(x) = / dp ¢, () (p; x) + / dp c_(p)d—(pi x) = b (x) + b—(x)

K(x', x)é(x) = / drK (x', x)[ihdo — 2ceAo(x)]d(x),

LMI

(218)

(219)

(220)

(221)
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The transition amplitude |

K(x', x)p(x) = —ih0(t — t)by(x') +ih0(t — t')p—(x') (222)

which means that K(x’, x) propagates forward in time any function ¢ (x") originating
from positive energy solutions, and backward in time the functions ¢_(x’) originating
from negative energy solutions. The role played by the Feynman propagator of the
Klein-Gordon equation for the charged particle in a plane-wave electromagnetic field is
identical to that of the free propagator in the free particle case.

Using the properties of the Volkov solutions, one can easily see that K(x', x) is also a
Green function of the Klein-Gordon equation. Indeed, using the Hamiltonian (207) and
the expression (219) of K(x, x"), one obtains by direct calculation

H(x)K(x,x") = —hz(S(t —t)o(r —r') (223)
The particle in the laser field and an interaction

H=—c"NM,N" 4+ m°c” + Hint(x) = Ho + Hing(x) (224)
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The transition amplitude |

We follow exactly the same steps as in the case of the free particle under the action of
H;.t, assumed of finite duration,
lim  Hint(x) =0 (225)
t—+o0

but use Volkov states instead of free plane-waves; the & matrix element between the
initial state and a Volkov state of positive energy and momentum p» is

Sie = (W (p2ix), ilx))| (226)
In the previous equation 1;(x) is the solution of the Klein-Gordon equation with the
Hamiltonian (224) which evolves from the initial state, assumed a Volkov state of
positive energy and momentum p; state at t — —oo; for the case of a finite laser pulse,

Yi(x) reduces at t — —oo to a plane wave free solution. The solution );(x) obeys the
integral equation

1

i) = 04 (pri %) + gz [ AR () Hhos () () (227)
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The Volkov solutions The Gordon-Volkov solutions

The transition amplitude |l

with K(x, y) is the Green function (219) of the Klein-Gordon equation, analyzed before.
In the first order perturbation theory with respect to Hint(x), ¥i(x) is approximated as

i) % 04 (pri )+ [ AV () Mo () (i) (228)
and the & matrix becomes

Sir & 0(p1 — p2) + Air (229)
with

Air = 2 [ X (pri ) o (<) fim (w0 (pr; x), K (x, x'). (230)

Using in the previous equation the expression (219) of the propagator and the properties
of the Volkov solutions one obtains

i
iF = ——
ch

A d*x3 (p2; x) Hint (X) b4 (1 X) - (231)
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Applications |

Volkov states: solutions of the Dirac equation in a plane-wave field A = A(¢).

A(@) = (0:A(¢)),  A(@) = exAx(9). (232)
Typical choice:

W

Ad(d) = Aof(¢)sin (qu) = Aof(¢)sinko, k= % (233)
k

¢li>r£OO f($) =0, f(¢)=sin’ (2—&> , ko € (0,2Nm). (234)
The free particle case:

VO ) = Y [ dpa®)v® (pir. ) (235)

i=1,4

with |w,§0)(p; r,t)) solutions of the free Dirac equation Example:

ci(p) ~ exp(—o/2(p — po)*), (236)
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Applications ||

with the normalization condition:

> [ dolae)” -1 (237)

i=1,4
For

o\ 3/2

a(p) = c(p) = (;) : exp(—ap”); (238)

one obtains the electron initially at rest

The time evolution:

WO (r, 1)) = / dpc(p)|v® (pi v, 1)) (230)

In the presence of a laser field: superposition of Volkov states

W(r, 1)) = / dpc(p)|(pir, ). (240)
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The probability to find the particle “ in a Volkov state” of momentum p

P(p) = |c(p)I’ (241)
At the end of the pulse the Volkov states reduce to the free states up to a phase, i.e.

Vet - o) = [ dpc(p)e™ | pir. ). (242)
Then

P(p) = lc(p)I’ (243)

the phase F(p) is responsible for a translation
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Floquet theory Proof of Floquet theorem

Proof of Floquet theorem |

The case of a time-dependent Hamiltonian
H(t+ T) =H(t). (244)
use the notation w =27/T .

The Floquet theory: introduced by G. Floquet at the end of XIX century in Math. In
Physics

® Shirley (1965)
@ Sambe (1973)

@ Fainsthein, Manakov si Rapoport(1978)
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Proof of Floquet theorem ||

For a time periodic Hamiltonian theere is a solution of TDSE with the structure
| We(t)) =e 7" | dp(t)) with |®r(t+T))=|®r(t)). (245)

NB: Similar to the Bloch Theorem.
Proof:
Change of variable t — t + T and use the periodicity of H

LA V(E+T))
dt

=H(t) | W(t+T)),

i.e. if | W(t)) is solution also | W(t)) =| W(t+ T)) is solution (generally not the same)

One defines a Floquet solution as the solution for which
[ We(t+T))=A[WVr(t)), (246)

any t, with constant A

Properties of Floquet solutions:
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Floquet theory Proof of Floquet theorem

Proof of Floquet theorem IlI

@ The norm is constant in time (if the solution can e normalized)
(Wr(t) [Wr(t)) = (Wr(t+T) [Vr(t+T)), (247)
i.,e. | A|=1. Then use the notation
A=e #WT W= Ww-. (248)

Y

@ If the solution can't be normalized, use the same notation but with complex W

In general case write the solution as

[ We(t)) = i | o(t)) (249)
From the definition
[Wep(t+T)) =X | We(t)), (250)
we get
Wt + T)) = e 77T | Wp(t)),

e FWIET) | ot 4 T)) = e 7" e 5 | 0(1)),
ie. |®(t+T))=|®(t)). (QED)
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Quasienergies; Floquet maps |

For a solution of the form
[ Wp(t)) =e 7" | op(t)) with |Pp(t+ T))=| r(t)). (251)

W (in general a complex number) is named quasienergy.

Obs: the quasienergies are not well defined, but up to a multiple of hw .

|We(2)) = e 7Y | (t)) = e 7V | B(1)), (252)
with

W =W + Nhw, | ®(t)) = ™ | d(t)), (253)

But also | ®(t)) leads to a Floquet solution.

Usually all the quasienergies are brought in the same interval
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Floquet theory Quasienergies; Floquet maps

Quasienergies; Floquet maps |

E—hw/2<W < E+hw/2, cu E The calculation is done numerically; by expanding
|®£(t)) in a Fourier series

&)

[Pr(t)) = D e ™| o), (254)

n=—oo

where | ®,) the Fourier-Floquet components. Also the Hamiltonian can be expanded

oo

()= Y e ™ H,, (255)

n=—oo

One obtains the system of Floquet equations

For a Floquet solution

| We(t)) = e 7| dp(t)) (257)
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Floquet theory Quasienergies; Floquet maps

Quasienergies; Floquet maps Il

with the notation W = W, — % we have

(Wp(t)|Wp(t)) ~ e (W WHL/R (258)

—i(W — W*) =2Im(W) = —T, (259)
then

(We(t)|Vr(t)) ~e ', T =—-2im(W) (260)

[ is the ionization rate. The solutions with negative I are unphysical (named ghost
solutions). In the absence of the electromagnetic field the Hamiltonian (constant) still
has a Floquet problem:

Z Hy_ )= (W +nhw) | ®,), n=—o0,..,—-1,0,1, .00, (261)

n’=—oo

with H, ~ 9, the system of equations reduces to

Ho | ®,) = (W + nhw) | ®,), n=—o0,..,—1,0,1,..00, (262)
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Floquet theory Quasienergies; Floquet maps

Quasienergies; Floquet maps |V

I.e.
W, = E, + nhw (263)

where E, are the atomic levels. For a given electromagnetic field (normally in the dipole
approximation) with the vector potential

A(t) = Ao [cos (/2 cos(wt 4 do)s1 + sin (/2 sin(wt + o) s2] , (264)

electric field

E(t) = Aow [cos(/2 sin(wt 4+ dg)s1 —sin(/2 cos(wt + do)s2] (265)
we define
€ E(t) B |e| Ao
a(t) = ;e w2 y oo — EU (266)

One can solve the Floquet systems of equations, and calculate the quasienergy W for
different values of « (i.e. different intensities). A Floquet map: the graphical
representation of W as a function of a.
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Quasienergies; Floquet maps V
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Quasienergies; Floquet maps VI
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Quasienergies; Floquet maps VII
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The atomic stabilization |

@ In the presence of the external electromagnetic field the energy levels are shifted
and they aquire a width, with the significance of ionization rate.

@ Atomic stabilization: the tendency of a tom to become stable against ionization
for large field intensity. Explained by the behaviour of the imaginary parts of the
Floquet quasienergies. They decrease when ayg increases; the stabilization is more

efficient at high frequencies.

@ this is named stationary stabilization, i.e. the stabilization in the monochromatic
regime.

In the realistic case of a finite laser pulse, the state of the system evolves in time; the
evolution is either along a Floquet state (adibatic), or along a path consisting of diffrent

states (diabatic).

The case of diabatic evolution: one defines diabatic paths.
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R[S la T he atomic stabilization

The atomic stabilization IV

M. Stroe, PhD thesis, 2009, UB,

Under the effect of a pulse Ey = Ey(t), we have:

Pion —1_ e J dtT (Eg(t)) (267)

Dynamic stabilization: the decrese of the total ionization proability at the end of a laser
pulse, as a function of the pulse intensity.

Effect of frequency and laser pulse shape. If more than one path is possible then we
have effects of the path (controled also by the pulse shape)
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The atomic stabilization V

Tonization probability
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Figure 6. The same as for figure 4, except that @ = 4 au.

M. Boca, H. G. Muller, M. Gavrila,
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Floquet theory in the oscillating frame |

After an unitary transformation we obtain the Schrodinger equation in the oscillating
frame
P’ OWin(r, t)

o + V(r+ aft)) | Vku(r, t) =ik 51 ,

(268)

« is the classical trajectory of the free electron in the field. Write the electromagnetic
field as (dipole approximation)

A(t) = Ao [cos (/2 cos(wt + o) s1 + sin(/2 sin(wt + do) s2] , (269)
E(t) = Aow [cos(/2 sin(wt + dp)s1 —sin(/2 cos(wt + do) sz ] (270)
then the trajectory
e E(¢)

at) =

(271)

Me w2

The Floquet theory in the KH (oscilating) frame: the Floquet theory applied for the
TDSE in the KH frame
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Floquet theory in the oscillating frame ||

Solution:
Wi (r, t) = e 7 WKHE D (r ¢) (272)

with ®xp(r, t) periodic

The components Fourier Floquet ®}"(r), obey the equations

(Wt o= o) @RM) = 30 Vi) 087 (), (273)
V() = 5 [ €™ Vit a(n) e (274)

obs: the general form was

Z H. . ) = (W + nfw) | ®,), n=—o00,..,—1,0,1, ...00, (275)

Important property: at large distances the equations are not coupled, i.e. the
assimptotic conditions are easy to be imposed
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Floquet theory in the oscillating frame Il

Large distances:

2
- 27; ASY = (W + nhiw) o (276)
define
212
Z’:" = W + nhw, (277)

for real W: define:

@ closed channels: W + nhw < 0: k, € R

(bn ~ %e:I:ik,,r (278)

@ open channels: W + nhw > 0: k, = ik,

(bn ~/ %e—&nr (279)
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Floquet theory in the oscillating frame |V

for complex WW: ionization conditions: define:

ko = Re ko + i Tm ky , (280)
h2 ) ) h2
— [(Rek,,) — (Im k) }:ReW—I—nhw, Y Reky-Tmk,=TmW. (281)

(S]

@ Re W + nhw > 0 for open channels
@ Re W 4+ nhw < 0 for clased channels

- R eik,,r
O, (r) —  fl(F)

: Rek, >0 open,
r

r — o0 Im k, >0, closed. (282)
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Floquet theory in the oscillating frame V

I.e. divergent wave in the open channels and decreasing in the closed channels.
Redefinition of choice of k,

Rek, >0, open Imk, >0, closed (283)

Phisycal interpretation: related to the the density current

Trt) = 2/_2 (VaV Uy — UpVUs) = (284)
h (P*VO — dVD™) ex gIm Wit (285)
2iMe P h '
if
2 Im W
< 1/4 2
hImWT<< 1 sau _~ < 1/4r, (286)
approximate the time average as
1 [T o~ 2Im W
= ~ O Vo, —d, Vo, t] . 287
(T ) T/o Jdt ~ 5o n;w( v/ \v )exp< - ) (287)
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Floquet theory in the oscillating frame VI

At large distances, (by direct calculation)

s h . |f,,|2
~ — Re k,
(j ) er : e p

2Im W
h

exp(—2Im k, r) exp ( t) : r— oo.

(288)

I.e. only open channels contribute Also it is interesting the density probaiblity

P(r, t) =| UE"(r, t) |°=| ®(r) |* exp (2IH];W t) : (289)
and its time average
(P) = %/OTPdtz n_io &, |7 exp (2”’;‘/‘/15) | (200)
The ionization rate calculated from the assymptotic curent
dR:<‘735'dSR>, R — 00. (291)
J,(P)dr
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Floquet theory in the oscillating frame VI|

Is a sum of contributions from the open channels

oo

Z d , (292)

n>ng

dR, h . Rek, |f,|?e?mkT
— | > no . 293
dQ Me Rinoo fV Zn/ | cbn/ |2 dr ’ =10 ( )
Rn: the ionization rate in the process in which n photons are absorbed Obs: applied

even if Floquet solutions are not normalizable One can prove that:

Im(W) = —g (204)
F_Zr _Z/ dQ (295)

The imaginary part of the quasienergy is —1/2x the total ionization rate and is
negative.
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High frequency Floquet theory |

Write the Floquet system of equations

P> KH
(W + nhw — T Vo(r)) O () =D Vo w(NOu(r). (296)
n#n’
and define
P2
Hy = >me -+ Vo(l‘) . (297)

Ho the hamiltonian of a fictitious system with the potential

Vo(r) = = /0 V(r+ (b)) dt (208)

HF limit (i.e. high frequencies and fixed « (high intensity))
The frequency does not appear in RHS, then in the HF limit

o," =0, n#0, Dy (r)#0, (299)

101 / 128



Floquet theory High frequency Floquet theory

High frequency Floquet theory I
whr — 2': — Vo(r) | &5 (r) =0, (300)

In the high frequency limit the Floquet system of equation reduces to the equation of
structure, which has real eigenvalues W In the HFFT there is no ionization.

Validity criterion: hw > |Eg

,, Where Egp is the ground state energy if the system.

Corrections to the high frequency limit: one can calculate analitically the first order
correction to the quasienergy

By iterating the Floquet system of equations

2
(W s = P vi(e)) () = Ve, 0. (301)
one can prove that
M _ M HF \ |2
= e 2 kn/ | (ko= [ Vo | @0 ) |7 d U, (302)

n=nq
ko = kot (r | ko—) = v (kp;r)

Atomic stabilization: the validity criterion of the HFFT is replaced by:
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High frequency Floquet theory |l

@ Validity criterion: hw > |Wo/|,, where Wy is the ground state of the structure
equation.

@ But, |W| decreases with ap (i.e. with intensity).

@ conclusion: at large enough intensity the HFFT is allways valid

Results for Hidrogen atom: The dressed potential Vo becomes singular along the path of
the trajectory a(t) (M. Gavrila): in the case of linear polarization: log singularity along
the trajectory and 1/x_1/2 at the end points; for circular polarization log singularity

along the circle.
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High frequency Floquet theory IV

(1s)o,

] 20 40 a0 a0 100
(/3,2 (m.u.)

F1G. 1. High-frequency limit energy of the hydrogen ground state (lsps,, for linear and
circular polarizations, as function of 12w~ 2 For linear polarization of, = ["w~2, and for
circular polarization of, = ({/2)"2w ~2, see Eq. (128). Based on results by Pont er 2l. (1988) and
Yoz and Gavrila (unpublished).
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Fi1G. 2. High-frequency limit energies of the hydrogen first few state belonging to the
symmetry manifolds 7, o,, 7, 7, for linear polarization, as functions of a}. From Pont et

al. (1990), Fig 1.
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LTI Y
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yw By
LI IR

LTI R Y
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Fic. 4. High-frequency limit energy eigenfunction of the normalizzd ground state (15)5, of
hydrogen in the oscillating frame of reference for increasing =f; case of linear polariza-
tion. ¢(x,0,2) is the wave function in the xz plane, where the z axis & chosen along
the axis of symmetry of the dressed potential, Eq. (129), and the x axis is arbitrary. Atomic
units are used. There is a change of length scale in the figures as ), increases. Note that
dichotomy sets in between of, = 30 and 70. From Pont ez al. (1988), Fig. 1.
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Perturbation theory in the interaction picture |

TDSE in the Schrodinge picture:
oV

iha = HoV + V(t)V (303)
Assume Hp time-independent with the eigenvalue problem
Holj) = €ilj) = hwjl)) (304)

and define the unitary transformation
v = e—%HOtw (305)

The the new state vector 1) obeys the equation

TG A

i = V(t) (306)
with

V(t) = e oty (t)e ntot (307)
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Diagramatic method of perturbation theory Perturbation theory in the interaction picture

Perturbation theory in the interaction picture |l

The implicit equation for the solution

t

w(e) =1~ [ V() (308)

— o0

and the transition amplitude

Air = (F|A]i) (309)
with
A=1+) AWM (310)
N>1
AN t tn—1
AN (1) = % / dti . .. / dtnV(t1) ... V(tn) (311)
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The monochromatic case |

Consider the monochromatic case in the dipole approximation and length gauge. Then

V(t) = en™E(t) . De™ 7 1ot (312)
with
1 fwt 1 * —iwt
E(t) = §Ee + EE e (313)

The first order result at t — o0
—ﬁ dty [e_i(“’_“f_”)E(f\D\i> + e—’<Wf—wf+W>E*<f|D|i>} (314)

— OO

(F1A]7) =

NB: consider only the component of D along E Result

(FIAW]iy = —%’ [6(wi — wr — W)E(F|DIi) + 8(wi — wr + w)E™(f|DIi)] (315)

two terms, for abs/emission.
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Diagramatic method of perturbation theory The monochromatic case

The monochromatic case |l

The second order term

27‘(‘/

(FIAD|i) =

[6(wi — wr +2w) T1 + d(wi — wr) To 4+ 6(wi — wr — 2w) T3]
(316)

with

o=y (E/2)(fID]j)(E/2)U|Dli) (317)

Wi + W — wj

o z:(/5"‘/2)<f|DIJ’>(E/2)<J'|D|/>Jr

: Wi + W — Wj
J

Z (E/2){fIDL)(E"/2)(|Dli)

Wj — W — Wj

I - Z(E*/2)<f|DIJ>(E*/2)<J|D|> (318)

w;—w—wj

J
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The monochromatic case |l

Compact expression if we define

Gw) =2 wU iolj (319)

Then
i = (E/2)*(f|DG(wi +w)Dli) (320)
T = (|E|/2)*(fIDG(wi + w)D|i) + (|E|/2)*(f|DG(w; — w)D|i)
Ts = (E7/2)*(f|DG(w; —w)DIi) (321)

(322)

The three terms correspond to

@ Ti: two photon absorbtion

@ T3: two photon emission

@ T>: one photon absorbtion+ one photon emission
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The diagramatic method for monochromatic case |

Represent by arrows the emitted/absorbed photons; a N order diagram: a diagram with
N arrows. It corresponds to An net photon exchanged (|An| < N). More than one

distinct diagrams for given N and An
example: N =4, An = —2; 4 distinct diagrams

13Td

Rules for writing a diagram

@ The point at which an arrow meets the line is to be called a“vertex.”
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The diagramatic method for monochromatic case |

@ The “net frequency” AQ in any part (or whole) of a diagram is defined as (sum of
frequencies associated with the outgoing arrows)-(sum of frequencies associated
with the ingoing arrows), in the considered part or whole of the diagram in
question.

@ The “vertex strength” is denoted by V. In our example V = (E/2)D
@ The unperturbed “propagator” is defined by

Glw—AQ)=>" — %{'_ » (323)

J

@ Read the diagram from below upward and assign a factor V at a vertex if the
arrow at the vertex is ingoing, or a factor V* if the arrow is outgoing.

@ Between any two neighboring vertices assign a propagator G(w; — AS), where the
“net frequency” AL is obtained from the entire portion of the diagram below the
position of the propagator.

@ Multiply the vertex factors and propagator factors from right to left in the
sequence of their occurrence from the bottom of the diagram upward.
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The diagramatic method for monochromatic case lll

@ To obtain the transition amplitudes, calculate the matrix element of the above
expression between (f| and |i) and include the overall factor

.1
—27Tlh—N5(w,' — AQO — wf) (324)

with N: the number of vertices and A2y the net difference of frequencies.

@ The method is valid also for fields with more colors

Example 1: two photon absorption / second order process

According to the above rules the transition amplitude becomes

E
A2 — —27ri%5(w,- — wr + 2w)<f|§DG(w; +w) 7 Dli) (325)

Example 2: two photon absorption / fourth order process
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The diagramatic method for monochromatic case IV

AW = 27TI—5 w; — wr + 2w) X 326
if

(f|§DG(w,~ +w)§DG(w;)§DG( DIi)
.
2

DG(w, - 2w) DG(w,

(f|§DG(w,~+w)EDG(w,-) DG (w;

Di >

<f|EDG(w,-

DIi)

( DG(w, + 3w) DG(w, + 2w) DG(w, + cu) D| )

The transition rate and the generalized cross section

The transition probability is written as the modulus square of the transition amplitude,
l.e.

2

Pl — 27rl—5(w, — wr — (n)w){f]...]i) (327)
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The diagramatic method for monochromatic case V
with the identity

5%(Q) = %5(9) (328)

One defines the finite transition rate

Wy = (2r) <2m§m) T 6(wi — wr — (n)w) (329)
and
. E%\ 11

Consider two cases

@ Transition to a “discrete” final state with a line-shape function

1 1/(2t)

(331)

W)= G = (e 1 1 28)
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The diagramatic method for monochromatic case VI

@ transition to a continuum state with the density

_ mke V ki
pler) = R (2m)3  2m

—hwi 4+ (n)hw (332)

Integrate over energies leads to eliminatin of 9

“S(w)d(.. ) (333)

(n)
Tt

n 2raF
dWI.(f) (27r)< W: w)

with (...) other quantum numbers or

(n)

hp(er)dQ (334)

n 2maF
dW = (2r) (M)

e?

with €: the ionized electron direction. The total ionization rate

Wi = / d(...)dw (335)
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The diagramatic method for monochromatic case VII

and the generalized cross section: ratio between the rate and the incoming photon flux F

(n)
S _ Wi
lf _ F (336)
Possible alternative definition
(n)
(”) — Wif 337
’f Fn ( )
with wrong dimensions The range of aplicability:
The probability ratio p{"™™? /p(" can be approximated as
2maFw €ap \ 2
R — p"2) /(M (_) 338
P /p > » (338)
NB it comes from
‘A(”) (”+2)‘ N ‘A(”) + 2Re [(A(”)) A(”+2)] (339)
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The diagramatic method for monochromatic case VII|

in the optical domain

R~ (&)z (340)

L, \w

(I, = 3.51 x 10'® W/cm?, hAw, = 27.2 eV). One obtains the domain for “normal’ case
(w~1eV)as /< 10*W/cm?
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Renormalization of perturbation theory |

The goal: to remove the singularities which arise nonrelatd to phisycal resonant
processes.

The origin of singuralities: let us calculate e.g the contibution of a third order diagram
for three photon absorbtion: It has the form

AB — —2m%5(w,- —wr 3w)<f|§DG(w,- + w)gDG(w; + 2w)§D|i> (341)
AR (f|Dlki) (k1| Dlke) (k2| DIi)

i — 42

Z (wi + 2w — wi, J(wi + w — Wik, ) (i + 3w — wr) (342)

ky ko

Singularity: appears if one of the denominators vanishes, e.g. if there is a state r such
that

Wi +2w=w,, wi+2w=uw (343)

In general, an intermediate resonance is said to occur when one or more of the
denominators vanish, which can happen if

Wr = Wj + hw (344)
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Renormalization of perturbation theory Il

Such resonances are of physical interest, they describe a real enhancement of the
transition probability. Another example: the third order process for one photon
absorbtion contains a term of the form

AP L3 (f|D]ki)(ki| D]ka){k2| D|i)

(Wi — wip) (Wi + w — wiy)

(345)
ky ko

It is singular if ko = i and if k; = f; these are unphysical singularities.
For renormalization: Equivalent formulation of the perturbation theory.

Consider the TDSE in the Schrodinger picture, with the quantized field. Then the full
Hamiltonian is time indepedent, i.e. one can write

P(t) = e M, (346)
with ¢; the initial state (at t — —oc0). Equivalent form of the propagator
K(t, —o0) = —% dEG* (E)e™ #E¢ (347)
il
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Renormalization of perturbation theory Il
1

+ E) = 4
G (E) E—H-+ie (348)
and
Y(t) = _ 1 dEGT(E)e 7 g, (349)
2T
The exact expression of the transition amplitude at the moment t
A (t) = —% dE(f|G*(E)|i)e™ n(E—Ent (350)
s
One can prove that
G (E)= Gy (E)+ Gy (E)VGy (E) + Gy (E)VG, (E)VGy (E) + ... (351)

with Gp the Green function of the unperturbed system. One defines the transition
operator

T(E)=V + VG; (E)V + VGy (E)VGy (E)V + ... (352)
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Renormalization of perturbation theory IV

and we can write
G (E)= Gy (E)+ Gy (E) TGy (E) (353)

We want to eliminate the initial and final states from the expansions. Define a
“projector” On the “rest of the state”.

g =1—[){i| = [f)(f] (354)
and a reduced transition operator
T7(E) = V + VGy (E)qV + VGy (E)qVGy (E)qV + ... (355)

T is the transition operator from which we eliminated the singularities.

The relation between T and 7 can be written starting from
T=V4+VG T=V+VGy(|ii| +|f){f|+q)T = VS + VGy qT (356)
with

S=1+ G (|| +|AFNT (357)
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Renormalization of perturbation theory V

By iterating the relation T = VS + VG, qT starting from T ~ VS
T=VS+VG qVS+...=715 (358)

The relation between the matrix elements: we write T and T;; in terms of the matrix
elements of the reduced transition operator

Ti =76 + 146Gy (i) Tii + 14 Gy () T, (359)

Ti = 7i + i Gy (1) Tii + 7i¢ Gy (f) T, (360)
In the previous equaiton we have used the notation

Go (i/F) = (G (E))iysr = (E — Eije +i€) ™ (361)

We obtained a system of equations for T; and Tg (assume i # f) from which

Tfi

T, (362)

T 1= G (D[l — G (F)rar] — T Gg (1) Gy (F)
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Renormalization of perturbation theory VI

The matrix element of the exact Green function G is written using
G'(E) = Gy (E) + Gy (E) TGy (E)

7 (E)

GS(E) =
i (E) [E — Ei — i + i€][E — Er — Tor + i€] — Ts(E)Tir(E)

(363)

Energy renormalization of the initial and final states: write the denominator in the
previous equation as

[E — E;, — 15 + ie][E — Ef — 1 + ie] — Tfi(E)T,'f(E) =

(E — E/ +ie)(E — Ef + i€) (364)
and solve for E ;.
Notations:
El;f=Eir+ Dif(E), Diyf(E)=Tisa(E) £ ¢ir (365)
N 1/2
¢if(E) = A [(1—|— TZZ’) —1] , A=E+71i—E —71# (366)
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Renormalization of perturbation theory VI|
Then

El)f=Eir+ Dje(E) (367)

become eigenvalue problems for E, the solutions which reduces to the unperturbed levels
Ei/¢ in the absence of interaction are the renormalized E; ;.

One obtains complex values for E,-’/f, “dressed energy levels” which decays.

The transition amplitude

1 r Tif — L(E—Ef)t
w(t) = — — E , —~e
Define
1 . 1
¢(x) = i —imd(x) +P() (369)
and
Aie(t) = _% dETir((E — E/)C(E — E;)e_%(E_Ef)t (370)
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Renormalization of perturbation theory VI

Properties of ¢ function

C(E — E/)C(E — Ef) = C(E/ — Ef)[C(E — E/) — C(E — Ef)] (371)
Jim C(E)e™ #E = —2ris(E)A(t) (372)

Assume the imaginary parts of E/, E; are small and can be neglected. We write the
transition amplitude as

Ag(o0) = lim [7a(E/)C(E! - El)e #(E —Et (373)

~mi(Ef)e # (5G] — E'f)en (56 (374)

Only the first term contributes; One defines

Cr(t) = An(oco)en (ErENt (375)
We obtain
Ce(t) = 1ir(E))C(E! — Ef)e™ w(E —EPt (376)
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Renormalization of perturbation theory IX

and the transition rate

d 2
R = —|C(8)* = T |m(E))S(E] — EY) (377)
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