Divided differences for a function f(x)

The divided differences are defined recursively as:

$$f[x_i] = f(x_i) \tag{1}$$

$$f[x_{i-1}, x_i] = \frac{f[x_i] - f[x_{i-1}]}{x_i - x_{i-1}}$$
(2)

$$f[x_{i-2}, x_{i-1}, x_i] = \frac{f[x_{i-1}, x_i] - f[x_{i-2}, x_{i-1}]}{x_i - x_{i-2}}$$
(3)

$$\vdots
f[x_{i-j}, x_{i-j+1}, \dots, x_i] = \frac{f[x_{i-j+1}, x_{i-j+2}, \dots, x_i] - f[x_{i-j}, x_{i-j+1}, \dots, x_{i-1}]}{x_i - x_{i-j}}.$$
(4)

x_i	$f[x_i]$	$f[x_{i-1}, x_i]$	$f[x_{i-2}, x_{i-1}, x_i]$		$f[x_{i-j}, x_{i-j+1}, \dots, x_i]$
x_0	$f[x_0]$				
x_1	$f[x_1]$	$f[x_0, x_1]$			
x_2	$f[x_2]$	$f[x_1, x_2]$	$f[x_0, x_1, x_2]$		
x_3	$f[x_3]$	$f[x_2, x_3]$	$f[x_1, x_2, x_3]$		
÷	:	•	:	:	
x_j	$f[x_j]$	$f[x_{j-1}, x_j]$	$f[x_{j-2}, x_{j-1}, x_j]$		$f[x_0, x_1, \ldots, x_j]$

Table 1: Divided differences table.

Newton Interpolation

Newton Interpolation is one of the polynomial methods used for the interpolation of a data set of points. It uses divided differences.

We consider known a set of n + 1 points $(x_i, y_i), i = 0, 1, 2, ..., n$:

$x_0 \ ee$	$y_0 = f(x_0)$	
x_1	$y_1 = f(x_1)$	
$\bigvee x_2$	$y_2 = f(x_2)$	
V :		(5)
\vee		
x_n	$y_n = f(x_n),$	

but not the analytic expression of the function f(x). The goal is to estimate f(x) at an arbitrary x using smooth curves through and beyond all x_i , for i = 0, 1, 2, ..., n. By *interpolation*, we understand the estimation of f(x) for any $x \in [x_0, x_n]$. The *extrapolation* is the estimation of f(x) for $x \in (-\infty, x_0] \cup [x_n, \infty)$.¹

The order of interpolation is given by the number of points used in the interpolation scheme minus one, i.e. n + 1 - 1 = n.

The Newton interpolation is based on the Newton polynomial approximation that can be derived like an expansion, but based on multiple centers (x_0, x_1, \ldots, x_n) .

Theorem (Newton polynomial)

Assume $f \in C^{n+1}[a, b]$ and the set of n + 1 distinct points

$$(x_i, y_i), \ i = 0, 1, 2, \dots, n, \text{ with } x_i \in [a, b] \text{ and } y_i = f(x_i).$$
 (6)

Then f(x) can be written as

$$f(x) = P_n(x) + R_n(x),$$

where $P_n(x)$ is a polynomial of degree n that can be used to approximate f(x) and is given by

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) \dots (x - x_{n-1}).$$
(7)

The coefficients a_i , i = 0, 1, 2, ..., n are constructed using divided differences.

As $f(x) \approx P_n(x)$, we have for the given set of points:

$$y_i = f(x_i) = P_n(x_i) \tag{8}$$

and the polynomial goes through the n + 1 points (x_i, y_i) , i = 0, 1, 2, ..., n.

The remainder is given by

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)(x-x_1)\dots(x-x_n)$$

for c a value in the interval [a, b].

The coefficient a_i of the Newton polynomial (7) is

$$a_i = f[x_0, x_1, \dots, x_i],$$
(9)

i.e. the most to the right element on the row corresponding to the current x_i in table 1.

For convenience, let us denote

$$d_{i,j} = f[x_{i-j}, x_{i-j+1}, \dots, x_i].$$
(10)

Then

$$d_{i,0} = f[x_i], \ i = 0, 1, \dots, n \tag{11}$$

$$d_{i,j} = \frac{d_{i,j-1} - d_{i-1,j-1}}{x_i - x_{i-j}}, \quad \substack{i = 1, 2, \dots, n\\ j = 1, 2, \dots, i.}$$
(12)

¹Note that interpolation and extrapolation differ from function approximation. For the first two $f(x_i)$ is not given at points on our choice, while in the function approximation one tries to find an approximate easy to compute function.

With the above notations, the Newton polynomial is

$$P_n(x) = d_{0,0} + d_{1,1}(x - x_0) + d_{2,2}(x - x_0)(x - x_1) + \dots + d_{n,n}(x - x_0)(x - x_1) \dots (x - x_{n-1}).$$
(13)

and can be created recursively:

$$P_0(x) = d_{0,0} \tag{14}$$

$$P_1(x) = P_0(x) + d_{1,1}(x - x_0)$$
(15)

$$P_2(x) = P_1(x) + d_{2,2}(x - x_0)(x - x_1)$$
(16)

$$\vdots
P_n(x) = P_{n-1}(x) + d_{n,n} \prod_{i=1}^{n-1} (x - x_i).$$
(17)

Algorithm

• Give the list of points:²

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}.$$
(18)

- Calculate the divided differences using the known values $y_i = f(x_i)$.
 - For i = 1, 2, ..., n, $d_{i,1} = y_i$.
 - For i = 1, 2, ..., n 1, and for j = 1, 2, ..., i,

$$d_{i+1,j+1} = \frac{d_{i+1,j} - d_{i,j}}{x_{i+1} - x_{i-j+1}}.$$
(19)

• Calculate the Newton polynomial of degree n-1:

$$P(x) = d_{1,1} + \sum_{i=1}^{n-1} \left(d_{i+1,i+1} \prod_{j=1}^{i} (x - x_j) \right) \quad \text{or} \quad P(x) = d_{1,1} + \sum_{i=2}^{n} \left(d_{i,i} \prod_{j=1}^{i-1} (x - x_j) \right). \tag{20}$$

²In order to implement the set of points as a Mathematica list, we start with (x_1, y_1) instead of (x_0, y_0) , having thus n points instead of n + 1.