Divided differences for a function $f(x)$

The divided differences are defined recursively as:

$$
\begin{align*}
f\left[x_{i}\right] & =f\left(x_{i}\right) \tag{1}\\
f\left[x_{i-1}, x_{i}\right] & =\frac{f\left[x_{i}\right]-f\left[x_{i-1}\right]}{x_{i}-x_{i-1}} \tag{2}\\
f\left[x_{i-2}, x_{i-1}, x_{i}\right] & =\frac{f\left[x_{i-1}, x_{i}\right]-f\left[x_{i-2}, x_{i-1}\right]}{x_{i}-x_{i-2}} \tag{3}\\
\vdots & \\
f\left[x_{i-j}, x_{i-j+1}, \ldots, x_{i}\right] & =\frac{f\left[x_{i-j+1}, x_{i-j+2}, \ldots, x_{i}\right]-f\left[x_{i-j}, x_{i-j+1}, \ldots, x_{i-1}\right]}{x_{i}-x_{i-j}} . \tag{4}
\end{align*}
$$

x_{i}	$f\left[x_{i}\right]$	$f\left[x_{i-1}, x_{i}\right]$	$f\left[x_{i-2}, x_{i-1}, x_{i}\right]$	\ldots	$f\left[x_{i-j}, x_{i-j+1}, \ldots, x_{i}\right]$
x_{0}	$f\left[x_{0}\right]$				
x_{1}	$f\left[x_{1}\right]$	$f\left[x_{0}, x_{1}\right]$			
x_{2}	$f\left[x_{2}\right]$	$f\left[x_{1}, x_{2}\right]$	$f\left[x_{0}, x_{1}, x_{2}\right]$		
x_{3}	$f\left[x_{3}\right]$	$f\left[x_{2}, x_{3}\right]$	$f\left[x_{1}, x_{2}, x_{3}\right]$		
\vdots	\vdots	\vdots	\vdots	\vdots	
x_{j}	$f\left[x_{j}\right]$	$f\left[x_{j-1}, x_{j}\right]$	$f\left[x_{j-2}, x_{j-1}, x_{j}\right]$	\cdots	$f\left[x_{0}, x_{1}, \ldots, x_{j}\right]$

Table 1: Divided differences table.

Newton Interpolation

Newton Interpolation is one of the polynomial methods used for the interpolation of a data set of points. It uses divided differences.

We consider known a set of $n+1$ points $\left(x_{i}, y_{i}\right), i=0,1,2, \ldots, n$:

x_{0}	$y_{0}=f\left(x_{0}\right)$
\vee	
x_{1}	$y_{1}=f\left(x_{1}\right)$
\vee	
x_{2}	$y_{2}=f\left(x_{2}\right)$
\vee	\vdots
\vdots	
\vee	$y_{n}=f\left(x_{n}\right)$,

but not the analytic expression of the function $f(x)$. The goal is to estimate $f(x)$ at an arbitrary x using smooth curves through and beyond all x_{i}, for $i=0,1,2, \ldots, n$. By interpolation, we understand the estimation of $f(x)$ for any $x \in\left[x_{0}, x_{n}\right]$. The extrapolation is the estimation of $f(x)$ for $x \in\left(-\infty, x_{0}\right] \cup\left[x_{n}, \infty\right) .{ }^{1}$

The order of interpolation is given by the number of points used in the interpolation scheme minus one, i.e. $n+1-1=n$.

The Newton interpolation is based on the Newton polynomial approximation that can be derived like an expansion, but based on multiple centers $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$.

Theorem (Newton polynomial)

Assume $f \in C^{n+1}[a, b]$ and the set of $n+1$ distinct points

$$
\begin{equation*}
\left(x_{i}, y_{i}\right), i=0,1,2, \ldots, n, \text { with } x_{i} \in[a, b] \text { and } y_{i}=f\left(x_{i}\right) \tag{6}
\end{equation*}
$$

Then $f(x)$ can be written as

$$
f(x)=P_{n}(x)+R_{n}(x),
$$

where $P_{n}(x)$ is a polynomial of degree n that can be used to approximate $f(x)$ and is given by

$$
\begin{equation*}
P_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right) \tag{7}
\end{equation*}
$$

The coefficients $a_{i}, i=0,1,2, \ldots, n$ are constructed using divided differences.
As $f(x) \approx P_{n}(x)$, we have for the given set of points:

$$
\begin{equation*}
y_{i}=f\left(x_{i}\right)=P_{n}\left(x_{i}\right) \tag{8}
\end{equation*}
$$

and the polynomial goes through the $n+1$ points $\left(x_{i}, y_{i}\right), i=0,1,2, \ldots, n$.
The remainder is given by

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)
$$

for c a value in the interval $[a, b]$.
The coefficient a_{i} of the Newton polynomial (7) is

$$
\begin{equation*}
a_{i}=f\left[x_{0}, x_{1}, \ldots, x_{i}\right] \tag{9}
\end{equation*}
$$

i.e. the most to the right element on the row corresponding to the current x_{i} in table 1 .

For convenience, let us denote

$$
\begin{equation*}
d_{i, j}=f\left[x_{i-j}, x_{i-j+1}, \ldots, x_{i}\right] \tag{10}
\end{equation*}
$$

Then

$$
\begin{align*}
d_{i, 0} & =f\left[x_{i}\right], i=0,1, \ldots, n \tag{11}\\
d_{i, j} & =\frac{d_{i, j-1}-d_{i-1, j-1}}{x_{i}-x_{i-j}}, \quad \begin{array}{l}
i=1,2, \ldots, n \\
j=1,2 \ldots, i
\end{array} \tag{12}
\end{align*}
$$

[^0]With the above notations, the Newton polynomial is

$$
\begin{equation*}
P_{n}(x)=d_{0,0}+d_{1,1}\left(x-x_{0}\right)+d_{2,2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+d_{n, n}\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right) . \tag{13}
\end{equation*}
$$

and can be created recursively:

$$
\begin{align*}
P_{0}(x) & =d_{0,0} \tag{14}\\
P_{1}(x) & =P_{0}(x)+d_{1,1}\left(x-x_{0}\right) \tag{15}\\
P_{2}(x) & =P_{1}(x)+d_{2,2}\left(x-x_{0}\right)\left(x-x_{1}\right) \tag{16}\\
& \vdots \tag{17}\\
P_{n}(x) & =P_{n-1}(x)+d_{n, n} \prod_{i=1}^{n-1}\left(x-x_{i}\right) .
\end{align*}
$$

Algorithm

- Give the list of points: ${ }^{2}$

$$
\begin{equation*}
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \tag{18}
\end{equation*}
$$

- Calculate the divided differences using the known values $y_{i}=f\left(x_{i}\right)$.
- For $i=1,2, \ldots, n, d_{i, 1}=y_{i}$.
- For $i=1,2, \ldots, n-1$, and for $j=1,2, \ldots, i$,

$$
\begin{equation*}
d_{i+1, j+1}=\frac{d_{i+1, j}-d_{i, j}}{x_{i+1}-x_{i-j+1}} \tag{19}
\end{equation*}
$$

- Calculate the Newton polynomial of degree $n-1$:

$$
\begin{equation*}
P(x)=d_{1,1}+\sum_{i=1}^{n-1}\left(d_{i+1, i+1} \prod_{j=1}^{i}\left(x-x_{j}\right)\right) \quad \text { or } \quad P(x)=d_{1,1}+\sum_{i=2}^{n}\left(d_{i, i} \prod_{j=1}^{i-1}\left(x-x_{j}\right)\right) \tag{20}
\end{equation*}
$$

[^1]
[^0]: ${ }^{1}$ Note that interpolation and extrapolation differ from function approximation. For the first two $f\left(x_{i}\right)$ is not given at points on our choice, while in the function approximation one tries to find an approximate easy to compute function.

[^1]: ${ }^{2}$ In order to implement the set of points as a Mathematica list, we start with $\left(x_{1}, y_{1}\right)$ instead of $\left(x_{0}, y_{0}\right)$, having thus n points instead of $n+1$.

