
Group Theory 

General Framework 



Definition of a group (G,∘) 

 A set 𝐺 endowed with an operation, ∘: 𝐺 × 𝐺 → 𝐺, called the group law of 𝐺, 
verifying 4 axioms: 

 Closure 

For all 𝑎 and 𝑏 in 𝐺, 𝑎 ∘ 𝑏 is also in 𝐺 

 Associativity 

For all 𝑎, 𝑏 and 𝑐 in 𝐺, 
(𝑎 ∘ 𝑏) ∘ 𝑐 = 𝑎 ∘ (𝑏 ∘ 𝑐) 

 Existence of an identity element 

There exists an element 𝑒 in 𝐺 such that, for all 𝑔 in 𝐺, 
𝑒 ∘ 𝑔 = 𝑔 ∘ 𝑒 = 𝑔 

 Existence of an inverse element 

For each 𝑎 in 𝐺, there is an element 𝑏 in 𝐺 such that 

a ∘ 𝑏 = 𝑏 ∘ 𝑎 = 𝑒 

 



Unicity, commutativity, ways of notation 

 The associativity allows for the brackets to be dropped when applying the 

operation repeatedly, but the order remains 

 Exercise: 

Prove that the identity element and the inverse of a given element from the 

group are unique! 

 Abelian (commutative) group 

Thus is called a group having the property that for all 𝑓 și 𝑔 in 𝐺, 
𝑓 ∘ 𝑔 = 𝑔 ∘ 𝑓 

 Additive/multiplicative notation 

Often in practice the group law ∘, the identity 𝑒, the inverse element of 𝑔 
and 𝑔 ∘ 𝑔 ∘ ⋯∘ 𝑔

𝑛

 are denoted: 

 additively (+, 0,  −𝑔, n𝑔),  

 multiplicatively (⋅, 1,  𝑔−1, 𝑔𝑛) 
 



Group order; examples 

 A finite group 

 is a group having a finite number of elements, as opposed to an infinite 

group 

 The order of the group 𝐺, denoted by 𝐺  

is the number of elements in the group, if finite, or ∞ 

 Simple examples (exercise!) 

Which of the following are groups? Which are abelian groups? 

 (ℤ,+), (ℚ,+), (ℝ,+), ℂ,+  

 the additive group of a vector space 

 (ℤ∗,⋅), (ℚ∗,⋅), (ℝ∗,⋅) 

 (ℕ,+), (ℤ,⋅) 

 (ℤ𝑛, +) 

 𝐺𝐿𝑛 K , the set of all invertible matrices with elements taken from the field K, 

together with matrix multiplication 

 

 

 

 

 

 

 

 



Homomorphism, Isomorphism 
 A group homomorphism 

is a map 𝑓: 𝐺1 → 𝐺2 having the property that, for all 𝑎, 𝑏 ∈ 𝐺1, 
𝑓 𝑎 𝑓 𝑏 = 𝑓 𝑎𝑏  

 Do the following hold for a homomorphism? 
f 𝑒1 = 𝑒2 
f 𝑎−1 = ,𝑓 𝑎 -−1 

 A group isomorphism 
is an invertible homomorphism, that is one for which there exists  
 𝑓−1: 𝐺2 → 𝐺1 such that 

𝑓 ∘ 𝑓−1 = 𝑖𝑑𝐺2  
𝑓−1 ∘ 𝑓 = 𝑖𝑑𝐺1 

 Show that a homomorphism is an isomorphism if and only if it is bijective 

 An endomorphism 
is a homomorphism 𝑓: 𝐺 → 𝐺, where the domain and codomain coincide 
An automorphism 
is an isomorphism 𝑓: 𝐺 → 𝐺, where the domain and codomain coincide  

 The isomorphism relation satisfies the properties of an equivalence relation: 

 reflexivity 

 symmetry 

 Transitivity 
 



Subgroups 

 Subgroup 

A subset 𝐻 of the group 𝐺 is called a subgroup if, for all 𝑎, 𝑏 ∈ H: 
𝑎𝑏 ∈ H 
𝑎−1 ∈ H 

 Prove that he two previous conditions can be replaced by just one, 

𝑎𝑏−1 ∈ H 

 Notation 

𝐻 ≤ 𝐺 

 

 Trivial examples are the improper groups 

1 , G 

 Is the intersections of two subgroups a subgroup? What about their union? 

 Show that a subgroup of 𝐺 is the center of 𝐺, 
formed by all the elements in 𝐺 that commute with all the other elements 

𝑍 𝐺 = *𝑎 ∈ 𝐺|𝑎𝑏 = 𝑏𝑎, ∀𝑏 ∈ 𝐺+ 



Subgroup generated by a set 

 Subgroup generated by a set 𝐴 ⊆ 𝐺 
We define 𝐴  as the minimum subgroup containing 𝐴, i.e. the intersection of 
all subgroups of 𝐺 that contain 𝐴.  
An element 𝑔 of 𝐺 is in 𝐴  if and only if is a product of a finite number of 
either elements of A or their inverses 

 A finitely generated group 
is a group G = 𝐴 , where 𝐴 is a finite set 

 A cyclic group 
is a group generated by just one element 

G =  𝑎  

 Show that any cyclic group is isomorphic to either ℤ  or ℤ𝑛, where 𝑛 ∈ ℕ! 

 Which of ℤ, ℤ × ℤ and ℚ are cyclic or of finite type? 



The order of an element in a group 

 The order of an element 𝑎  
in a group 𝐺 is defined as the order of the subgroup it generates 

ord 𝑎 = 𝑎  

 For a finite order element 𝑎 of the group 𝐺 the following hold: 

  ord 𝑎 = min *𝑛 ∈ ℕ∗|𝑎𝑛 = 1+ 

 ord 𝑎 = 𝑛 if and only if 𝑎𝑛 = 1 and 1, 𝑎, 𝑎2, … , 𝑎𝑛−1 are all distinct 

 A finite group only has finite order elements. 

 There are infinite groups whose every element has a finite order, called periodic 
groups, such as ℤ2 × ℤ2 ×⋯, ad infinitum. 

 There are infinite groups whose only element of finite order is the identity, called 
torsion free groups, such as ℤ 

 If 𝑓: 𝐺 → 𝐻 is a homomorphism, and 𝑎 is an element of 𝐺 of finite order, then 
𝑜𝑟𝑑 𝑓 𝑎  divides 𝑜𝑟𝑑 𝑎 , being equal to it if 𝑓 is injective. (in general the order 
of a subgroup divides the order of the group, as we shall see) 

 Show that 𝑜𝑟𝑑 𝑎𝑏 =𝑜𝑟𝑑 𝑏𝑎 . It is otherwise unrelated to 𝑜𝑟𝑑 𝑎  and 𝑜𝑟𝑑 𝑏  

 



Transformation groups, examples 

 A transformation group 
of a set A is a collection G of bijective (one to one and onto) transformations of 
the set A, having the properties: 

𝑓1, 𝑓2 ∈ 𝐺 ⇒ 𝑓1𝑓2 ∈ 𝐺 
𝑓 ∈ 𝐺 ⇒ 𝑓−1 ∈ 𝐺 
the identity 𝑖𝑑𝐴 ∈ 𝐺 

 𝑮 is a subgroup of 𝑺(𝑨), 
the set of all bijective transformations of the set 𝐴 

𝑆 𝐴 = *f: A → 𝐴|𝑓 𝑏𝑖𝑗𝑒𝑐𝑡𝑖𝑣𝑒+ 

 A permutation group 
is a transformation group of the set {1,2,…,n}, where 𝑛 ∈ ℕ∗ 

 The symmetric group 𝑺𝒏 
is the set of all bijective transformations of the set 1,2,…𝑛 , 𝑛 ∈ ℕ∗ 

𝑆𝑛 = 𝑆( 1,2,…𝑛 ) 

 We write any of the 𝑆 = n! permutations in the form 

𝜎 =
1 2 … 𝑛
𝜎(1) 𝜎(2) … 𝜎(𝑛)

 

 Show that 𝑆𝑛 is non-abelian if 𝑛>2 ! 
 



Transformation groups, examples 

 Exercise! 
Express all the elements in 𝑆3 in terms of the identity 𝑒, the transposition 
𝜏 = 1,2  and the cycle 𝜎 = 1,3,2 . Write the multiplication table for this group 

 General linear group 
 Let 𝑉 be a vector space over a field K. From the set of all endomorphisms of 𝑉, 
𝐸𝑛𝑑𝐾 𝑉 = *𝑓: 𝑉 → 𝑉|𝑓 𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑎𝑝+ we select the bijective ones (automorphisms), 
defining 

𝐺𝐿 𝑉 = *𝑓 ∈ 𝐸𝑛𝑑𝐾 𝑉 |𝑓 𝑏𝑖𝑗𝑒𝑐𝑡𝑖𝑣𝑒+ 
 

 Prove the isomorphisms 

 𝐸𝑛𝑑𝐾 𝑉  ≅ 𝑀𝑛 K  (with addition, and with multiplication, too, as ring isomorphism) 

 𝐺𝐿 𝑉 ≅ 𝐺𝐿𝑛 K  (with multiplication) 

 Prove that the translations in a vector space 𝑉 
𝑡𝑢: 𝑉 → 𝑉, 𝑡𝑢𝑣 ≡ 𝑢 + 𝑣, ∀𝑣 ∈ 𝑉 

form a transformation group isomorphic to 𝑉, 𝑇 𝑉 = *𝑡𝑢|𝑢 ∈ 𝑉+ 

 



Unitary and Orthogonal Transformations 

 The Unitary Group 
Given a complex vector space 𝑉, show that 𝑈(𝑉) ≤ 𝐺𝐿(𝑉), where 

𝑈 𝑉 = 𝑓 ∈ 𝐸𝑛𝑑ℂ 𝑉 𝑓(𝑢), 𝑓(𝑣) = 𝑢, 𝑣 , ∀𝑢, 𝑣 ∈ 𝑉  

 The Orthogonal Group 
Given a real vector space 𝑉, show that 𝑂(𝑉) ≤ 𝐺𝐿(𝑉), where 

𝑂 𝑉 = 𝑓 ∈ 𝐸𝑛𝑑ℝ 𝑉 𝑓(𝑢), 𝑓(𝑣) = 𝑢, 𝑣 , ∀𝑢, 𝑣 ∈ 𝑉  

 Show that the set of unitary matrices 
𝑈 𝑛 = 𝐴 ∈ ℳ𝑛 ℂ 𝐴

∗𝐴 = 𝐼𝑛  
is a subgroup of 𝐺𝐿𝑛 ℂ  and that it is isomorphic to 𝑈 𝑉  if 𝑉 is a complex vector space of dimension 
𝑛 

 Show that the set of orthogonal matrices 
𝑂 𝑛 = 𝐴 ∈ ℳ𝑛 ℝ 𝐴

⊺𝐴 = 𝐼𝑛  
is a subgroup of 𝐺𝐿𝑛 ℝ  and that it is isomorphic to 𝑂 𝑉  if 𝑉 is a real vector space of dimension 𝑛 

 Show that the set of unitary matrices with unit determinant  
𝑆𝑈 𝑛 = 𝐴 ∈ 𝑈 𝑛 det 𝐴 = 1  

is a subgroup of 𝑈 𝑛  

 Show that the set of orthogonal matrices with unit determinant  
𝑆𝑂 𝑛 = 𝐴 ∈ 𝑂 𝑛 det 𝐴 = 1  

is a subgroup of 𝑈 𝑛  

 How many independent real/complex parameters 
are needed to describe the groups 𝑂 𝑛  and 𝑈 𝑛 , respectively? What about 𝑆𝑂 𝑛  and 𝑆𝑈 𝑛 ? 
 



Some exercises 

 Study the dihedral group 𝐷𝑛 
of the isometries of the regular polygon with n sides. Show that 

𝐷3 ≅ 𝑆3 

 What are the subgroups of 𝐷3 ≅ 𝑆3? What is the centre of this group? 

 Prove the Rearrangement Theorem, 

For every element 𝑓 ∈ 𝐺, the sets 𝑓𝑔 𝑔 ∈ 𝐺  and 𝑔𝑓 𝑔 ∈ 𝐺  contain every 

element once and only once. 

 

 



Equivalence relations 
 A binary relation on a set 𝐴 

is a collection of ordered pairs of elements of 𝐴, i.e. a subset of the Cartesian 
product 𝐴2 = 𝐴 × 𝐴. 

 For an equivalence relation, 
remember the three necessary conditions: 

 Reflexivity 

 Symmetry 

 Transitivity 

 The equivalence class of 𝑥 
If “~” is an equivalence relation on the set 𝑀 we define the above as: 

𝐶𝑥 = 𝑦 ∈ 𝑀 𝑦~𝑥  

 Partition of M 
Prove that an equivalence relation divides a set 𝑀 into a set of disjoint 
equivalence classes whose reunion is the set 𝑀 

𝑥, 𝑦 ∈ 𝑀 ⇒ 𝐶𝑥 ∩ 𝐶𝑦 = ∅ or 𝐶𝑥 = 𝐶𝑦 

𝑀 =  𝐶𝑥
𝑥∈𝑀

 

 The quotient set 𝑴/~  
is the set of all equivalence classes, 

𝑀/~ = 𝐶𝑥 𝑥 ∈ 𝑀  



Cosets 
 Left and right cosets of a subgroup 𝑯 ≤ 𝐺 with respect to an element 𝒈 

𝑔𝐻 = 𝑔𝑕 𝑕 ∈ 𝐻  

𝐻𝑔 = 𝑕𝑔 𝑕 ∈ 𝐻  

 Prove that the above can be defined as partition classes of 𝐺 
introduced by equivalence relations defined as: 

𝑥~𝑙𝑦 iff 𝑥
−1𝑦 ∈ 𝐻 

𝑥~𝑟𝑦 iff 𝑦𝑥
−1 ∈ 𝐻 

 Do these classes form subgroups? 

 Find a well-defined, bijective mapping between the quotient sets, 

f: G/~𝑙 → G/~𝑟 

 The index of a subgroup 𝑯 in a group 𝑮, 𝑮:𝑯  

is defined as the number of elements of any of the above 

𝐺:𝐻 = G/~𝑙 = G /~𝑟  

 Study the cosets for 𝐷3 ≅ 𝑆3 



 Lagrange’s Theorem 

 Prove Lagrange’s Theorem 

𝐺 = 𝐻 𝐺:𝐻  

(prove all classes have a given number of elements) 

 Show that the order of an element divides the order of the group 

 Classification of some low order groups 

Show that: 

 𝑛 prime ⇔ 𝐺 is cyclic, isomorphic to ℤ𝑝 

 𝑛=4 ⇔ 𝐺 ≅ ℤ4 or 𝐺 ≅  ℤ2 × ℤ2 (the Klein four-group) 

 𝑛=6 ⇔ 𝐺 ≅ ℤ6 or 𝐺 ≅ 𝑆3 

 𝑛=8, non − abelian ⇔ 𝐺 ≅ 𝐷4 or 𝐺 ≅ 𝑄 (group of quaternions) 

 𝑛=8,  abelian ⇔ 𝐺 ≅ ℤ8,  𝐺 ≅  ℤ4 × ℤ2 or 𝐺 ≅  ℤ2 × ℤ2 × ℤ2 

 

 

 

 

 



Conjugacy classes 

 Two elements 𝒙, 𝒚 ∈ 𝑮 are said to be conjugate 

 if there exists an element 𝑔 ∈ 𝐺 such that 𝑥 = 𝑔𝑦𝑔−1 

 Show the above relation is an equivalence one! 

 The conjugacy class of an element 𝑎 
is defined as: 

𝑎 = 𝑏 ∈ 𝐺 𝑎~𝑏  

 Find the conjugacy classes of 

 An abelian group 

 The dihedral group 𝐷3 

 Argue that in general, the number of conjugacy classes in the symmetric 

group 𝑆𝑛 is equal to the number of integer partitions of n 

 



 Normal groups 

 A subgroup 𝑯 ≤ 𝑮 is called normal (or self-conjugate) 

if, ∀𝑕 ∈ 𝐻, 𝑔 ∈ 𝐺 ⇒  𝑔𝑕𝑔−1 ∈ 𝐻 

 Notation: 𝑯 ⊴ 𝑮  

 An inner automorphism of 𝑮 
𝜑𝑔: G → 𝐺, 𝜑𝑔 𝑥 = 𝑔𝑥𝑔

−1 

 𝑯 ≤ 𝑮 is normal iff it is invariant to any inner automorphism of 𝑮 

 Show that the following are normal subgroups: 

 1 , 𝐺  

 The kernel of a group homomorphism 𝑓: G → 𝐺′ 
Ker f = 𝑥 ∈ 𝐺 𝑓 𝑥 = 𝑒𝐺′  

 Any subgroup of an abelian group 

 Any subgroup of index 2 in a group G 

 Notice that the image of a subgroup through a group homomorphism 𝑓: 𝐺 → 𝐺′ 
is a subgroup but if 𝐻 ⊴ 𝐺 we are not sure f 𝐻 ⊴ 𝐺′ Provide a 

counterexample! 



Correspondence of (normal) subgroups 

 Prove that for any group homomorphism 𝑓: G → 𝐺′ (not necessarily bijective) 

 𝐻′ ⊴ 𝐺′ ⇒ 𝑓−1(𝐻′) ⊴ 𝐺 

 If 𝑓 is surjective then 𝐻 ⊴ 𝐺 implies f 𝐻 ⊴ 𝐺′ 

 If 𝑓 is surjective then there is a bijective correspondence between the set of all subgroups 

of 𝐺 that contain Ker f and the set of all subgroups of 𝐺′ 

 The same as the above but for subgroups → normal subgroups 

 Study the subgroups of ℤ. Show that: 

 𝑛ℤ ≤ ℤ, where 𝑛ℤ = 𝑛𝑧 𝑧 ∈ ℤ  

 If 𝐻 ≤ ℤ, then there exists an n ∈ ℕ such that H = 𝑛ℤ 

 𝑛ℤ ≤ 𝑚ℤ ⇔ 𝑚 divides 𝑛 

 Determine the subgroups of ℤ𝑛 
using the correspondence with the subgroups of ℤ that contain ker𝑓 

 A group is called simple if G ≠ *1+ and its only normal subgroups are 1  and G 

 The only abelian simple groups are the cyclic groups of prime order! 



Quotient group 
 Show that, if 𝑯⊴𝑮 is a normal subgroup, then 

G/~𝑙 = G/~𝑟 ≡ 𝐺/𝐻 

 Also show that the above forms a group together with the operation 

𝑥𝐻 𝑦𝐻 = 𝑥𝑦𝐻 

 Prove that a surjective homomorphism 𝑝: G → 𝐺/𝐻 is the canonical surjection, 

𝑝 𝑥 = 𝑥𝐻 

 Determine the kernel of 𝑝 𝑥 ! 

 What is the order of 𝐺/𝐻? 

 Prove the first isomorphism theorem 

 The kernel of a homomorphism 𝑓: 𝐺 → 𝐻 is a normal subgroup of 𝐺 

 The image of a homomorphism 𝑓: 𝐺 → 𝐻 is a subgroup of 𝐻 

 Im𝑓 ≅ 𝐺/ker𝑓 

 



 Universality of the factor group  
Show that if K⊴𝑮, 𝜑: G → 𝐺/𝐾 is the canonical surjection, and 𝑓: G → 𝐻 is a group 
homomorphism 

  ∃𝑕: 𝐺/𝐾 → 𝐻 group homomorphism such that 𝑕 ∘ 𝜑 = 𝑓 ⇔ ker𝜑 ≤ ker 𝑓 
If it exists, it is unique! 

 If 𝑕 exists, then it is surjective iff 𝑓 is surjective 

 If 𝑕 exists and is injective, then ker 𝜑 = ker 𝑓 
 

 Fundamental theorem on homomorphisms 
Let K⊴𝑮,φ: G → 𝐺/𝐾 is the canonical surjection, and 𝑓: G → 𝐻 is a group 
homomorphism. 
If K ≤ ker 𝑓 then ∃! a homomorphism h:G/K→H such that f = h φ. 

 If K = ker 𝑓 then ∃! h:G/Ker f→Im f isomorphism, called the canonical one  

 

Universality of the factor group  



Exercises 

 
 If 𝐺 is a group,  𝑍(𝐺) is its center, and Ψ:G → Aut(𝐺) with 

Ψ 𝑔 = φ𝑔, where φ𝑔: G → 𝐺, φ𝑔 𝑥 = 𝑔𝑥𝑔
−1 

(inner automorphisms, forming the set Inn 𝐺 ) 
show that 𝐺/𝑍(𝐺) ≅ Inn 𝐺 . 
(Show first that Ψ is a group homomorphism, that ImΨ ≡ Inn 𝐺 ⊴Aut(𝐺),  that KerΨ = 𝑍(𝐺)) 

 Show that 
ℤ/(𝑛ℤ) ≅ ℤ𝑛. 

 Show that the signature of a permutation, 

𝜀 𝜎 = 
𝜎 𝑗 − 𝜎(𝑖)

𝑗 − 𝑖
𝑖<𝑗

 

is a morphism from 𝑆𝑛 to {-1,1} with multiplication as group law. 

 Show that 
Ker 𝜀 ≡ 𝐴𝑛⊴𝑆𝑛 
𝑆𝑛/𝐴𝑛 ≅ {−1,1} 

𝐴𝑛 =
𝑛!

2
 

 What is the order of a cycle? How can a permutation be decomposed uniquely into cycles? 
 



Cayley’s Theorem 
 

 Theorem 

Any permutation can be decomposed uniquely (up to permutations of the factors) into 

a product of disjoint cycles! 

Do this for: 

σ =
1 2 3 4 5 6 7 8 9
3 9 5 8 7 4 1 6 2

 

 Theorem 

Any group with n elements is isomorphic to a subgroup of the permutation subgroup  𝑆𝑛 
Proof: 

Define 𝑢𝑔: G → 𝐺, 𝑢𝑔 𝑥 = 𝑔𝑥 

Prove that: 

𝑢𝑔𝑢ℎ = 𝑢𝑔ℎ, so 𝑢𝑔𝑢𝑔−1 = 𝑖𝑑𝐺 and therefore 𝑢𝑔 ∈ 𝑆 𝐺  

Ψ: G → S(𝐺), Ψ 𝑔 = 𝑢𝑔 is a group homomorphism 

KerΨ = 1   

Therefore ImΨ ≅ 𝐺 

 Definition: A group G is called simple iff G ≠ *1+ and it has no normal groups apart from 

1   and G 

 Prove that an abelian group G  is simple iff it is isomorphic to ℤ𝑝, where 𝑝 is a prime 

number. 



Direct and semidirect products 

 Direct product 
If 𝐺1, 𝐺2 are groups, 𝐺1 × 𝐺2 forms a group together with the group law 

(𝑔1, 𝑔2)(𝑕1, 𝑕2) ≡ (𝑔1𝑕1, 𝑔2𝑕2) 

 Theorem 1 about 𝐺1 × 𝐺2 
i) it contains a subgroup isomorphic to 𝐺1, formed by the elements (𝑔1, 𝑒2) 
ii) it contains a subgroup isomorphic to 𝐺2, formed by the elements (𝑒1, 𝑔2) 
iii) the elements of these two subgroups commute with each other 
iv) the only common element of the two subgroups is (𝑒1, 𝑒2) 
v) any element of the group is the product of two elements of the two subgroups 

 Extending the above definition, any group that is isomorphic to one constructed as 
above is called a direct product group 

 Theorem 2 
If a group 𝐺 contains two subgroups, 𝐺′1 and 𝐺′2, such that: 
i) any two ellements from different subgroups commute with each other, 
ii) 𝐺1′ and 𝐺2′ only have the identity in common, 
iii) any element of the group is the product of two elements of the two subgroups, 
then 𝐺 is a direct product group 
 
 

 

 

 

 

 

 



Direct and semidirect products 
 Prove that O(3) is a direct product group 

  Prove that the first condition in theorem 2 is equivalent to the following: 

𝐺′1and 𝐺′2 are both normal subgroups of 𝐺 

 To define a semi-direct group we weaken this condition by allowing 𝐺′2 to be 

any kind of subgroup 

 Definition: A group 𝐺 is called a semi-direct product group if it possesses two 

subgroups, 𝐺′1 and 𝐺′2, such that: 

i) 𝐺′1 ⊴ 𝐺 
ii) 𝐺1′ and 𝐺2′ only have the identity in common, 

iii) any element of the group is the product of two elements of the two 

subgroups 

 For both direct and semi-direct products, ii) implies that the decomposition 

iii) is unique 

 



 The Euclidean group of ℝ3 

 The group of all linear transformation of the Euclidean space, has elements of 

the form 𝑇 = *𝑅 𝑇 , 𝒕 𝑇 +, where R describes a rotation and t a translation so 

that: 

𝐫′ = 𝑇𝒓 = R T 𝐫 + 𝒕 𝑇  

 

 Show that indeed this forms a group, writing the explicit form of the group 

law and of the inverse. 

 We refer to the transformations with 𝒕=0 as pure rotations and to those with 

R=I as pure translations 

 Prove that this group is a semi-direct product group 



Group representations 
 A linear representation of a group 𝑮  

onto a vector space 𝑉, having the scalar field 𝐾 (real/complex numbers in our 
applications) is a group homomorphism  

𝐷: 𝐺 → 𝐺𝐿 𝑉  
The dimension of the representation is said to be the dimension of 𝑉 

 A matrix representation of a group 𝑮  
onto a vector space 𝑉, having the scalar field 𝐾 (real/complex numbers in our 
applications) is a group homomorphism  

𝐷: 𝐺 → 𝐺𝐿𝑛 K  

 Real/complex representations 

 Find a linear representation for Klein’s group and for the cyclic group of order 
3 

 Construct matrix representations starting from a linear representation of a 
group 𝐺 

 Two n-dimensional matrix representations 𝐷1: 𝐺 → 𝐺𝐿𝑛 K , 𝐷2: 𝐺 → 𝐺𝐿𝑛 K  are 
said equivalent if there exists 𝑆 ∈ 𝐺𝐿𝑛 K  such that 

𝐷2 𝑔 = 𝑆𝐷1 𝑔 𝑆
−1, ∀𝑔 ∈ 𝐺 

 



Further examples 

 𝑅:ℝ → 𝐺𝐿 ℝ2  given by the rotation with angle 𝛼 → 𝑅(𝛼) is a two-dimensional 

real representation of the group (ℝ,+) 

 The trivial representation, D: 𝐺 → ℂ∗, 𝐷 𝑔 = 1 

 For a group of matrices, D:𝐺 → ℂ∗, 𝐷 𝑔 = det (𝑔) provides a non-trivial 1D 

representation 

 

 



 The characters, invariant spaces, irreducible 

representations 

  The character of a representation D is the set 
𝜒 = 𝜒 g g ∈ 𝐺 ,where 
𝜒 g = Tr D g  

 The characters are functions of equivalence classes 

 Definition: Let 𝐷:𝐺 → 𝐺𝐿 𝑉  be  a linear representation. A subspace W of 𝑉 is 
called invariant with respect to D if D g 𝑊 ⊆ 𝑊,∀𝑔 ∈ 𝐺 

 Definition: A linear representation 𝐷:𝐺 → 𝐺𝐿 𝑉  is said to be irreducible if its only 
invariant subspaces are the trivial ones, 0  and 𝑉 

 Definition: A linear representation 𝐷:𝐺 → 𝐺𝐿 𝑉  is said to be reducible if it is not 
irreducible. 

 Prove that 𝑅:ℝ → 𝐺𝐿 ℝ3 , given by the rotation matrix with angle 𝛼 → 𝑅(𝛼) 
around the Oz axis, is a reducible representation of the group (ℝ,+) 

 

 Definition: Sum of representations 
If 𝐷1: 𝐺 → 𝐺𝐿(𝑉1), 𝐷2: 𝐺 → 𝐺𝐿(𝑉2) are linear representations, show that we can 
define a linear representation 𝐷:𝐺 → 𝐺𝐿(𝑉1⨁𝑉2), by 

𝐷 𝑔 𝑥1, 𝑥2 = 𝐷1 𝑔 𝑥1, 𝐷2 𝑔 𝑥2 , ∀ 𝑥1, 𝑥2 ∈ 𝑉1⨁𝑉2 

 

 



 Reducible representations 
 Definition: A linear representation 𝐷:𝐺 → 𝐺𝐿 𝑉  is said to be completely 

reducible if for any invariant space 𝑈 ≤ 𝑉 there exists a complement invariant 

subspace 𝑊 ≤ 𝑉 such that 𝑉 = 𝑈⨁𝑊 

 Describe the one-dimensional representations of a group in terms of 

reductibility. 

 Two linear representations of a group, 𝐷1: 𝐺 → 𝐺𝐿 𝑉  and 𝐷2: 𝐺 → 𝐺𝐿 𝑉  are 

called equivalent if there exists a linear isomorphism 𝑆: 𝐺 → 𝐺𝐿 𝑉 , such that, 

for any g ∈ 𝐺 
𝑆𝐷1 𝑔 = 𝐷2 𝑔 𝑆 

 Prove that if two linear representations of a group, 𝐷1: 𝐺 → 𝐺𝐿 𝑉  and 

𝐷2: 𝐺 → 𝐺𝐿 𝑉  are equivalent and 𝐷1 is irreducible, the same holds for 𝐷2, 
too. 

 Prove that if 𝐷: 𝐺 → 𝐺𝐿 𝑉  is completely reducible, it can be written as a 

direct sum of irreducible representations. 



 Unitary/Orthogonal representations 
 A unitary representation of a group 𝑮  

onto a complex vector space 𝑉 is a group homomorphism  
𝐷: 𝐺 → 𝑈 𝑉  

 Prove that any unitary representation is a completely reducible one. 

 An orthogonal representation of a group 𝑮  
onto a real vector space 𝑉 is a group homomorphism  

𝐷: 𝐺 → 𝑂 𝑉  

 Similarly define unitary/orthogonal matrix representations 


